
Performance Modelling of Mobile Networks using
MOSEL-2

Diploma Thesis in Computer Science

written by
Patrick Wüchner

born June 12th 1976 in Kronach

Department of Computer Science
(Distributed Systems and Operating Systems)

University of Erlangen-Nürnberg
Germany

School of Computing
University of Glamorgan

Wales, UK

Advisors: Prof. Dr. rer. nat. Fridolin Hofmann (Universität Erlangen-Nürnberg),
Prof. Dr. Khalid Al-Begain (University of Glamorgan),
Dipl.-Inf. Jörg Barner (Universität Erlangen-Nürnberg)

Begin: 1st December 2003
Submission: 1st June 2004

wuechner
Note
The six German pages preceding the English content have been removed from this online version of the Dipl.-Inf. thesis.

Copyright c© 2004 Patrick Wüchner.

Permission is granted to copy and distribute this document provided it is complete and
unchanged.

Parts of this work may be cited provided the citation is marked and its source is referenced.

ix

x

Abstract

The GSM/GPRS system is currently the most accepted and most used mobile technology
world-wide. Although a lot of effort is done to introduce its successor UMTS, the GSM/GPRS
system is still in the focus of performance evaluation to guarantee the user convenience despite
increasing utilisation by applying preferably simple and cheap extensions to the system. The
easiest way to improve a complex system is to optimise its software components. In general,
they can be adapted more easily than hardware components.

In this thesis, the current version of the MOdelling, Specification and Evaluation Language
(MOSEL-2 2.1) [1, 2, 12] will be used to model and evaluate the behaviour of the air interface
of a single GSM/GPRS cell, which can be considered as the “bottleneck” of the system. Here,
especially the effect of delay tolerant users is taken into account. The results of this thesis
can then be used to optimise the call admission control (CAC).

The insights into restrictions of modelling and evaluating complex systems with MOSEL-2
2.1 will be used to improve MOSEL-2 by enabling the usage of SPNP 6.1 simulation and by
introducing a novel rule pre-processor concept to MOSEL-2. This pre-processor allows the
automatic approximation of general distributions by Markovian constructs and therefore the
approximative numerical analysis of non-Markovian models.

The thesis will also give an introduction to performance modelling for readers that have little
experience in building formal stochastic models. Furthermore, the implementation of the
improvements, that lead to the new MOSEL-2 version 2.10, will be explained in detail to
extend the MOSEL-2 documentation and to simplify the access to future enhancements of
MOSEL-2.

xi

xii

Contents

1 Introduction and Background 1

1.1 Motivation and Overview . 1

1.2 Performance Evaluation Procedure – An Overview 2

1.3 Performance Modelling . 3

1.3.1 Markov Chains . 4

1.3.2 Queueing Networks . 8

1.3.3 Petri Nets . 11

1.4 Performance Evaluation . 14

1.4.1 Performance Measures . 14

1.4.2 Product Form Solution . 14

1.4.3 Markovian Analysis . 16

1.4.4 Discrete Event Simulation . 17

1.5 Introduction to MOSEL-2 . 19

1.5.1 System Description in MOSEL-2 . 21

1.5.2 Evaluation Methods . 22

1.5.3 Results . 23

1.6 Mobile Communication Systems . 24

1.6.1 1G: Analog Cellular Mobile Radio Telephone 24

1.6.2 2G: AMPS, CDMA and GSM . 25

1.6.3 2.5G: GSM with HSCSD, GPRS and EDGE 28

1.6.4 3G: UMTS . 32

2 Modelling and Evaluation of Mobile Systems with MOSEL-2 35

2.1 Markovian Approach . 35

2.1.1 GSM System . 35

xiii

2.1.2 GPRS System . 39

2.1.3 Refining the GPRS Model: DeTVoC 42

2.1.4 Improving CAC Algorithm: DOVE . 46

2.2 Non-Markovian Approach . 51

2.2.1 Reconsidering Exponential Distributions 51

2.2.2 Limitations of MOSEL-2 . 52

2.2.3 Conceptual non-Markovian Model of GSM/GPRS/DOVE System with
DeTVoC . 53

2.2.4 MOSEL-2 Model of non-Markovian GSM/GPRS/DOVE System with
DeTVoC . 54

2.2.5 Results . 55

3 Improving MOSEL-2 57

3.1 Using SPNP 6.1 Simulation . 57

3.1.1 Problem Description . 58

3.1.2 Changes to the CSPL-Generator . 58

3.1.3 Changes to the Result-Parser . 60

3.1.4 Additional Changes . 61

3.1.5 Summary . 62

3.2 Introducing general Distributions – The Rule Pre-Processor 64

3.2.1 Concept . 64

3.2.2 Implementation . 67

3.2.3 Example . 72

3.2.4 Summary . 76

4 Using improved MOSEL-2 77

4.1 Simulating non-Markovian GSM/GPRS Model 77

4.2 Using Empirical Distributions . 79

5 Conclusion and Future Work 83

5.1 What has been achieved? . 83

5.2 What has still to be done? . 84

xiv

A How to insert new Distributions to the Rule Pre-Processor 85

B Abbreviations 87

Bibliography 91

Index 99

xv

xvi

Chapter 1

Introduction and Background

1.1 Motivation and Overview

Since the first version, the modelling power of the MOdelling, Specification and Evaluation
Language MOSEL [1] (→ Chap. 1.5, p. 19) – in the meantime renamed to MOSEL-2 to em-
phasise the improvements [2] – increased substantially together with the evaluation power
of the tools that can be used by MOSEL. Now it is time to prove its applicability for the
modelling and evaluation of more complex systems.

In this thesis we will use MOSEL-2 to model different aspects of the air interface of a
GSM/GPRS (→ Chap. 1.6.3, p. 28) mobile system, which is nowadays the most popular
system for mobile communication world-wide. Of course, there are a lot of publications avail-
able that cover the performance evaluation of GSM/GPRS systems (see references) but only
a few of them deal with delay tolerant users.

Furthermore, we will use the insights into the limitations we encountered while using MOSEL-
2 as a base for more improvements to the tool.

The thesis is organised as follows: The remainder of this chapter will give a brief introduc-
tion into different performance modelling and evaluation methods, into MOSEL-2 and into
the different generations of mobile (telephone) systems including GSM/GPRS. The focus of
Chapter 2 will be the modelling and evaluation of a GSM/GPRS system using the current
version (2.1) of MOSEL-2. Chapter 3 will be used to improve MOSEL-2 by enabling SPNP
6.1 simulation and by introducing a rule pre-processor. In Chapter 4 we will use the improved
MOSEL-2 and compare the results to the ones obtained in Chapter 2. Finally, a summary
and suggestions for future work are given in Chapter 5.

Some of the results of this thesis already have been published in [23].

1

1.2 Performance Evaluation Procedure – An Overview

The performance estimation of any real system can be done in two major ways [9]: The first
way is to measure directly at the existing real system using monitors or benchmarks and
perhaps using synthetic workload. But in many cases the real system is unavailable for direct
measurements, because it is still under development, or it is too complicated, dangerous
(e.g. measuring high-voltage, underwater or explosive systems) or expensive to take measures
directly. Therefore, a second way is to build an abstract model of the real system that
comprises all interesting features and to do all investigations (→ Chap. 1.4, p. 14) on this
model. In this thesis, we will restrict ourselves to the second way.

The communication systems we are going to investigate, can be described as discrete event
systems . A system is called discrete event system if its state can only change at a discrete set
of points in time due to the occurrence of an event . These points of time may be unknown
and irregular due to unpredictable system behaviour (e.g. user interaction). Therefore, the
stochastic sojourn time the system remains in a specific state is usually modelled as continuous
time random variable.

Due to the fact, that the current state of the discrete event system may be left in different
ways, depending on the type of event that will occur next, the subsequent state may not be
known for sure. We can handle this nondeterministic behaviour of the system, that is caused
by parallel or concurrent events, by considering the probabilities of the state changes of the
discrete event system (probabilistic branching).

The modelling of systems with stochastic behaviour often is called stochastic mod-
elling. For the stochastic modelling of discrete event systems several high-level mod-
elling formalisms based on a graphical system representation exist, e.g. queueing networks
(→ Chap. 1.3.2, p. 8) or Petri nets (→ Chap. 1.3.3, p. 11). Queueing networks are very con-
cise but lack elements for describing complex synchronisation mechanisms. The Petri nets
are more suitable for modelling such systems, but quickly grow very complex and not all
dependencies (e.g. guard functions) can be properly described graphically.

Therefore, the textual modelling language MOSEL (→ Chap. 1.5, p. 19) was developed. The
textual method allows MOSEL to be very versatile. Furthermore, MOSEL allows to specify
not only the systems behaviour but also the desired result measures.

To obtain the desired results, the MOSEL model can be either simulated or analysed nu-
merically (→ Chap. 1.5.2, p. 22). For numerical (Markovian) analysis, the MOSEL model
description gets mapped onto into a stochastic process class called continuous time Markov
chain (CTMC). This representation of the system can become very large by the so called
state space explosion but provides a precise mathematical framework that allows fast access
to the performance measure results of interest.

Starting with the basic stochastic process underlying each discrete system description, the
next section will give an introduction to the different stochastic modelling formalisms men-
tioned above including a discussion why or why not they should be used directly by the
analyst to model a discrete systems behaviour.

Other commonly used methods for system modelling and evaluation, like series-parallel
acyclic directed graphs, non-series-parallel task precedence graphs, reliability block diagrams,
fault trees or stochastic process algebras are described in [1].

2

Stochastic modelling and the evaluation of these models can have different purposes [1, 57]:

• Performance Analysis: The measures of interest are usually the long-run averages
of system properties, like the mean throughput, the mean response time or the mean
utilisation of the system’s components that are assumed to be reliable.

• Reliability Analysis: The analyst is mainly interested in the time until a component
will fail, i.e. the mean time to failure (MTTF).

• Availability Analysis: If the components may fail and can be repaired, the proba-
bility that the system is working at a certain point of time is of interest.

• Dependability Analysis: Dependability describes the steadiness of the system’s
service. It comprises reliability and availability measures.

• Performability Analysis: The performability analysis investigates the effect of
component failures on the system’s performance.

Later, we are interested mainly in workload blocking and loss probabilities. Blocking and loss
of workload, which is caused by high utilisation of components, is not considered as system
or component failure. Therefore, we are dealing with performance modelling and analysis.

1.3 Performance Modelling

As mentioned before, many discrete event systems show nondeterministic, stochastic be-
haviour, for example due to the unpredictable nature of the systems interaction with its
environment (user behaviour). Therefore, discrete event systems are usually described as
stochastic processes.

A stochastic process Xt(ω) is a collection of random variables ω ∈ Ω indexed in most cases
by the parameter time t ∈ T ⊆ R and is often used to characterise the change of states of a
system over time [6]. The sample space Ω of the stochastic process is the set of all possible
values of ω [7] and is mapped to the set of real numbers: X : Ω → R [6]. The set of all
possible values of Xt(ω) is also called the state space S of the stochastic process [7].

3

1.3.1 Markov Chains

A. A. Markov [4]

Markov chains are named after the Russian mathematician Andrei
Andreyevich Markov (1856-1922) [4], who produced the first re-
sults (1906) [5] for discrete-state stochastic processes which fulfil
the Markov property.
A stochastic process is called a discrete-state process or chain if
the state space is discrete, i.e. Xt(ω) is defined over a finite or
countable set (e.g. S ⊆ N) [6, 7]. Otherwise, the process is called
continuous-state stochastic process. We focus on discrete state
spaces only.
A chain fulfils the Markov property , which is also known as the
memoryless property , if the entire past history (t0, t1, . . . , tk−1)
is summarised in the present (tk) state and therefore, future
(tk+1, tk+2, . . . , tn) states depend on the present state only, so
that the following equation of probability mass functions (PMFs)
holds:

P [Xtk+1
= xk+1|Xtk = xk, Xtk−1

= xk−1, . . . , Xt0 = x0] = P [Xtk+1
= xk+1|Xtk = xk] (1.1)

If the time parameter space T is discrete, the Markov chain is called discrete-time Markov
chain (DTMC). In this case, normally the assumption T ⊆ N0 is made and to simplify the
notation we will denote the DTMC by Xk with k ∈ N0. Otherwise, we are using X(t) for
representing so called continuous-time Markov chains (CTMCs).

The memoryless property has two facets [6]:

(1) All information of past states is irrelevant.

(2) The age of the current state, i.e. the time how long the process has been in the current
state is irrelevant.

If the chain fulfils both aspects, it is called Markov chain . To fulfil the second constraint, the
cumulative distribution function (CDF) of every inter-event time (i.e. the time between state
transitions) has to be exponentially (CTMC-case) or geometrically (DTMC-case) distributed.

If a stochastic process only fulfils the first aspect, for example because it uses other, non-
Markovian distributions, it is called semi-Markov process (SMP). In this case, the choice of
the next state and the time the transition will happen depends on the current state and its
age, but still not on any past state.

If an internal clock structure is added to the SMP to handle the inter-event times of all
possible transitions in one state, comparable to stochastic timed automata and discrete event
simulation (→ Chap. 1.4.4, p. 17), the stochastic process is called generalised semi-Markov
process (GSMP).

4

We can define the one-step transition probabilities pi,j from state i ∈ S to state j ∈ S [7]:
DTMC-case: transition at time n ∈ T :

pi,j(n) = P (Xn+1 = j|Xn = i) (1.2)

CTMC-case: transition during time period [u, v) with u, v ∈ T and u ≤ v:

pi,j(u, v) = P (Xv = j|Xu = i) (1.3)

And for u = v :

pi,j(u, u) =

{

1, i = j,
0, otherwise.

(1.4)

If the Markov chain is (time-)homogeneous, i.e. the transition probabilities do not change
with time, we can reduce the equations 1.2 and 1.3 to:

DTMC-case: the conditional PMF is independent from the observation time:

pi,j = P (X1 = j|X0 = i) (1.5)

CTMC-case: the conditional PMF only depends on the time difference t = v − u:

pi,j(t) = P (Xt = j|X0 = i) (1.6)

The transition probabilities are usually collected in a stochastic transition probability matrix
[7, 1]:

homogeneous DTMC-case:

P = [pi,j] =











p0,0 p0,1 p0,2 · · ·
p1,0 p1,1 p1,2 · · ·
p2,0 p2,1 p2,2 · · ·
...

...
...

. . .











(1.7)

homogeneous CTMC-case:

P(t) = [pi,j(t)] =











p0,0(t) p0,1(t) p0,2(t) · · ·
p1,0(t) p1,1(t) p1,2(t) · · ·
p2,0(t) p2,1(t) p2,2(t) · · ·

...
...

...
. . .











(1.8)

5

0 1

1/3

2/3

1/2

1/2

Figure 1.1: Example for a very simple DTMC.

A matrix is called stochastic, if the following conditions hold [8]:

1. The matrix is quadratic (in our case with order |S|):

i, j ∈ {1, 2, . . . , |S|} (1.9)

2. The matrix is non-negative:

pij ≥ 0 ∀i, j ∈ {1, 2, . . . , |S|} (1.10)

3. Every row sums up to 1:

|S|
∑

j=1

pi,j = 1 ∀i ∈ {1, 2, . . . , |S|} (1.11)

4. At least one element in each column differs from zero:

∃i ∈ {1, 2, . . . , |S|} : pi,j 6= 0 ∀j ∈ {1, 2, . . . , |S|} (1.12)

Besides the mathematical representation of transition probabilities in matrices, they can be
graphically illustrated.

Consider the transition probability matrix of a simple DTMC with state space S = {0, 1}.

P =

(

p0,0 p0,1

p1,0 p1,1

)

=

(

1
2

1
2

1
3

2
3

)

(1.13)

In Figure 1.1 the graphical representation of this DTMC chain is shown. The two filled circles
represent the two states of the system. The arcs between different or identical states represent
one-step transitions from one state to another or the same state. We label each transition
from state i ∈ S to state j ∈ S with the conditional PMF of the transition probability.

However, (homogeneous) CTMCs play a more important role in performance modelling than
DTMCs. But in contrast to DTMCs, the transition probability matrix P of a CTMC cannot
be built easily from the known system behaviour. Therefore, the transition rates qi,j from
state i ∈ S to state j ∈ S with j 6= i are considered instead. The transition rates are

6

collected in the transition rate matrix Q, which is also known as the infinitesimal generator
of the transition probability matrix or in short generator matrix [1, 7]. The transition rate
matrix Q contains the transition rates qi,j for i 6= j and the diagonal elements [1, 14]:

qi,i = −
∑

j 6=i

qi,j (1.14)

Theoretically, the transition rates are related to the transition probabilities via [1]:

Q = lim
t→0

P(t) − I

t
(1.15)

But practically, the transition rate matrix Q can be created directly out of the known tran-
sition rates of the model description. An example is given in Section 1.4.3.

The advantage of Markov chains, which can be used for performance, reliability, availabil-
ity and dependability analysis [1], is that they provide a precise mathematical framework.
Furthermore, Markov chains can be solved using standard numerical solution algorithms
(→ Chap. 1.4.2, p. 14).

Unfortunately, Markov chains can only be used, if the model of the system obeys the
Markov property. Another disadvantage is, that a lot of real systems consist of workload
processed by components, which cannot be easily and intuitively mapped to low level for-
malisms like Markov chains. Especially concurrent and asynchronous behaviour of parallel
system components cannot be described explicitly in Markov chains. Moreover, Markov
chains are getting very complex because of state space explosion in larger models. Therefore,
high level modelling paradigms like queueing networks (→ Chap. 1.3.2, p. 8) or Petri nets
(→ Chap. 1.3.3, p. 11) and tools for transferring them to Markov chains automatically were
developed.

7

µ µ1 2

service station

queue server

Figure 1.2: Example for a simple queueing network: closed tandem network.

1.3.2 Queueing Networks

A queueing network is a set of connected service stations which are also called nodes . Each
service station (node) consists of a queue and one or several servers and represents a com-
ponent in the real system. The workload of queueing networks is processed by these service
stations and often referred to as jobs . One or several jobs may wait in the queue while
another job is served in the server. The servers might be denoted with an exponentially
distributed service rate, i.e. the number of jobs that can be served per time unit. As an
example, a simple queueing network is shown in Figure 1.2. This configuration is also called
closed tandem network , because there is no connection to the environment and because the
system consists of two service stations in serial. The servers in the tandem network have
exponentially distributed service rates of µ1 and µ2, respectively.

The properties of each service station are described by (the extended) Kendall’s notation
[7, 1, 9, 14, 17]:

A/S/N - Q

or (extended):
A/S/N/B/P/Q

or (for batch processing):

A/S[a,b]/N. . .

With:

A (Arrival process): Declaration of the job inter-arrival time distribution using the fol-
lowing symbols:

M : exponential (Markov property (→ Chap. 1.3.1, p. 4), Poisson process)
Ek : Erlang with k phases
Hk : hyperexponential with k phases
Ck : Cox with k phases
PH : phase-type
D : deterministic (constant)
G : general (arbitrary)
GI : general independent

8

S (Service process): Declaration of the service time distribution using similar symbols.
The service time is the time that the server needs to process a single job. If batch
processing of several jobs at once is used, a defines the minimum, b the maximum
batch size [14].

N (Number of servers): Number of identical servers in service station.

B (Buffer size): Maximum number of jobs in the service station (in the queue and in ser-
vice).

P (Population size): Total number of potential jobs that may want to enter the service
station, also known as the calling population [17].

Q (Queueing discipline): Order in which jobs are served and policy for displacing of jobs
in service. If there is no replacement, the discipline is called non-preemptive, otherwise
preemptive.

FCFS (first-come-first-served): Jobs are served in the order in which they arrived
(non-preemptive).

LCFS (last-come-first-served): The last job that arrived will be served next. This
discipline can be preemptive or non-preemptive. Possible resumption poli-
cies could be [9, 10]:

PR or PRS (preemptive resume) : The displaced job will be suspended
and finished after resumption.

PRD (preemptive repeat different) : The displaced job will be
stopped and restarted after resumption. The service time
will be re-sampled.

PRI (preemptive repeat identical) : The displaced job will be
stopped and restarted after resumption using the same ser-
vice time as before.

SIRO (service-in-random-order): The jobs are randomly chosen out of the queue.
RR (round robin): Each job is given a time slice of specific length. If the job

is not completed by the end of this time slice, it is replaced and put back
to the (FCFS-)queue. Normally the preemptive resume policy is chosen for
this queueing discipline.

PS (processor sharing): This is similar to round robin except that the time
slices are considered as infinitesimal short. All jobs are then served simul-
taneously with a corresponding longer service time.

IS (infinite server): There is a sufficient number of servers in the service sta-
tion, so that there will be no jobs lining up in a queue, no displacement
and no resumption.

Priorities Static or dynamic (altering with the passing of time) priorities are assigned
to the jobs. The jobs are selected according to their priority. Jobs with the
same priority normally follow the FCFS-discipline. If the priorities are said
to be preemptive, arriving jobs are displacing jobs in service with lower
priorities.

In many cases, the notation is reduced to the first few elements, e.g. M/M/1. If omitted, an
infinite buffer size, infinite population size and the queueing discipline FIFO is assumed.

9

5,0 4,1 3,2 2,3 1,4 0,5

µ1

µ2

µ1µ1 µ1 µ1

µ2µ2 µ2 µ2

Figure 1.3: CTMC of closed tandem network.

As mentioned above, queueing networks are – unlike Markov chains (→ Chap. 1.3.1, p. 4) –
quite handy and intuitive for modelling systems consisting of resources (service stations) and
workload (jobs).

For example: We consider the following parameters for the tandem network shown in Figure
1.2:

• Total number of jobs in the system: K = 5

• Both service stations are M/M/1/K systems.

• The service rate (i.e. the number of jobs getting processed within a certain time unit)
of the first server is µ1.

• The service rate of the second server is µ2.

In Figure 1.3 the corresponding CTMC of this tandem network is shown. As we can see even
in this simple example, the state space explosion quickly makes the Markov chain quite large.
Furthermore, the components of the real system cannot be seen easily in the Markov chain.

Queueing networks are suitable for modelling systems with a lot of independent service sta-
tions (resources), which are used (occupied) by jobs sequentially, and with simultaneous
processing of different jobs by different service stations.

Unfortunately, queueing networks are only useful for performance analysis [1] - which would
be enough for our application - but also lacks some features like modelling aspects of syn-
chronisation, concurrency and conflict [1, 9].

10

µ1 µ2

Figure 1.4: Petri net of closed tandem network.

1.3.3 Petri Nets

Petri nets were designed 1962 by Carl Adam Petri [11]. Since then they were permanently
extended. A short overview of the different kinds of Petri net is given in [12]. In this thesis we
are particularly interested in generalised stochastic Petri nets (GSPNs), deterministic and
stochastic Petri nets (DSPNs), extended deterministic and stochastic Petri nets (eDSPNs)
and extended stochastic Petri nets (ESPNs).

In Figure 1.4 the graphical representation of a simple Petri net – again a closed tandem
network – is shown. As we can see, a basic Petri net consists of places (circles), transitions
(bars), arcs connecting places with transitions and tokens (dots). The state of a Petri net
is defined by the distribution of tokens among the places. This distribution of tokens is
also called the (current) marking of the Petri net. The marking can change by the firing
of a transition, i.e. a token is transferred from each input place of this transition to each
output place. A transition fires, if it is enabled and the firing time expires. A transition
is enabled when all input places contain at least one token. The firing time of a transition
can be zero. The transition is then said to be immediate . The firing times can also show
stochastic behaviour, e.g. they can be exponentially distributed. If a Petri net only consists
of immediate and exponential transitions, it is a GSPN. If it as well contains transitions with
constant (i.e. deterministic) firing time, it is a DSPN. Uniform distributions are additionally
allowed in eDSPN. ESPN may contain transitions with arbitrarily distributed firing time.

In this thesis, we will represent transitions with . . .

. . . no firing time (immediate) by bars.
(→ Fig. 1.5, p. 12)

. . . exponentially distributed firing time by unfilled rectangles.
(→ Fig. 1.4, p. 11)

. . . deterministic or uniformly distributed firing time by striped rectangles.
(→ Fig. 1.7, p. 13)

. . . arbitrarily distributed firing time by greyly filled rectangles.
(→ Fig. 1.7, p. 13)

11

3

2

Figure 1.5: Structural extensions of Petri nets.

3

2

Figure 1.6: Structural extensions of Petri nets (after firing).

In Figure 1.5 two well known structural extensions to basic Petri nets are shown [13, 58]:

• arc multiplicity : Arcs may be labeled with a multiplicity. In Figure 1.5 the immediate
transition is only enabled, if the input place contains at least three tokens. If the
transition fires, three tokens are removed from the input place. However, only one
token will enter the output place because the output arc does not have a multiplicity.

• inhibitor arc : The transition can be disabled by an inhibitor arc. Inhibitor arcs are
represented by arcs with small circles at the transition end (instead of arrows). For
disabling, the inhibiting place has to contain at least as much tokens as the multiplic-
ity declares. Originally, inhibitor arcs were introduced without multiplicity to extend
(unbounded) Petri nets to the representational power of Turing machines. The multi-
plicity of inhibitor arcs is a structural extension not for increasing the modelling power,
but for increasing the modelling convenience. Inhibitor arcs with multiplicity could be
described textually by using so called guard functions as well. Unfortunately, there is
no common graphical representation for guard functions.

Actually, we do not reach the power of Turing machines. Instead, we use the (multiple)
inhibitor arcs to stress the finite capacity of the places. We assume finite capacity for
each place, and therefore bounded Petri nets, to keep the potential state space finite,
which is the Cartesian product of the occupancy vector of all places, i.e. all possible
distributions of tokens among the places.

In Figure 1.6 the same network is shown after the firing of the transition. The transition is
now disabled, not only due to the fact, that the input place does not contain at least three
tokens, but also because of the active inhibitor arc.

We will stick to Petri nets when building graphical representations of conceptual models that
will be described in MOSEL-2 syntax afterwards.

12

t1

t2

Figure 1.7: Petri net with positive dependence arc.

To reduce the complexity of some Petri net models we will build later (→ Chap. 3.2, p. 64),
we develop a novel structural extension to the graphical representation: positive and negative
dependence arcs . Dependence arcs are comparable to inhibitor arcs or can be seen as a
graphical representation of a special class of guard functions . They as well can disable
transitions. The difference between dependence and inhibitor arcs is, that the condition for
the disabling of a so called slave transition is not a predicate on the number of jobs in a
certain place but the current state of another transition which is called master transition .

The extension is exemplarily introduced in Figure 1.7. The dependence arc is dotted. There
is a small circle marked with a plus sign for positive dependence arcs or a minus sign for
negative dependence arcs at the end that is connected to the slave transition that will be
controlled. At the other end of the arc is a dotted circle that marks the (part of the) master
transition which controls the slave transition. A slave transition with a positive dependence
arc can only be enabled, if the marked (part of the) master transition is enabled. A slave
transition with a negative dependence arc can only be enabled, if the marked (part of the)
master transition is disabled.

In Figure 1.7 the slave transition t2 is enabled although transition t1 is disabled, because the
master transition t1 would be enabled, if the lower part, which is ignored by the dependence
arc, would not block the transition.

So far, Petri nets seem to be a good compromise between modelling power, complexity and
clarity. But for very large systems, the building of graphical representations becomes quite
complex and cumbersome. Furthermore, despite all structural extensions the graphical rep-
resentation of system behaviour will always have to be completed with textual descriptions
of subtleties that cannot be expressed properly in graphical form. Therefore, we will use
the textual modelling language of MOSEL-2 (→ Chap. 1.5, p. 19) to describe the complete
model for evaluation.

13

1.4 Performance Evaluation

After the model is built, it can be evaluated in different ways. The applicable procedures
highly depend on the desired results and on the properties of the model.

1.4.1 Performance Measures

The purpose of performance evaluation is to determine different performance measures. The
impact of system parameter changes on the performance measures can then be investigated.
The obtained knowledge about the causal relationship can then be used to optimise the
system.

Common performance measures of interest are [9, 1, 7]:

• the mean response time

• the utilisation

• the mean throughput

• the mean or distribution of the queue length

• the mean waiting time

• the mean work in progress

Furthermore, we will be especially interested in:

• blocking probability (a job cannot be served immediately)

• loss probability (a job gets lost)

1.4.2 Product Form Solution

Solution methods based on product form models are mainly used in the context of queueing
networks (→ Chap. 1.3.2, p. 8). A queueing network is called in product form if it fulfils the
following conditions [9, 14, 7]:

• Local Balance Property (necessary and sufficient): A network is in local balance iff
the rate at which a state of the network is left because a job leaves a certain node
(service station) equals the rate at which the network re-enters the state because of a
job arriving at that node. This means, that if the queueing network is mapped to a
CTMC (→ Chap. 1.3.1, p. 4), the rate at which the CTMC enters a state equals the
rate at which the CTMC leaves the same state.

• M ⇒ M Property (”Markov Implies Markov”, necessary and sufficient): All nodes
of the network have to abide the M ⇒ M property , which is fulfilled iff that node
transforms a Poisson (→ Chap. 1.3.1, p. 4) arrival process into a Poisson departure
process.

14

Station Balance Property

Local Balance Property

Product Form Property M => M Property

Figure 1.8: Conditions for product form.

• Station Balance Property (sufficient): All queues in the network are considered parti-
tioned into positions. The rates at which jobs enter and leave these partitions have to
be equal.

The dependencies of the properties are shown in Figure 1.8 [7, 14].

It can be shown, that a queueing network is in product form, if it consists of the following
service station types only [9, 7, 14]:

• Type-1: M/M/m-FCFS (Limitation: No job classes with different service rates.)

• Type-2: M/G/1-PS

• Type-3: M/G/∞ IS

• Type-4: M/G/1-LCFS PR

For product form queueing networks there exist several theorems for very efficient and exact
evaluation without the generation of the state-space [7, 9, 14]:

• Jackson Theorem: This theorem provides exact results for open networks with a
single class of jobs and an infinite number of jobs. All service stations are following
the FCFS queueing discipline and may receive and send jobs from and to the external
environment. All arrival and service rates are exponentially distributed but may be
load dependent.

• Gordon/Newell Theorem: This is an extension to the Jackson-Theorem for han-
dling closed networks. Here, no jobs may enter or leave the system, i.e. the number of
jobs is constant. Besides that, all other restrictions of the Jackson-Theorem must be
met.

• BCMP Theorem: Using the Baskett, Chandy, Muntz and Palacios - Theorem
(BCMP-Theorem), results for all four product form service station types mentioned
above can be provided. Furthermore, multiple job classes are allowed, but in nodes
with FCFS queueing discipline all job classes must have the same service rate. The
network can be open, closed or mixed.

• Convolution Algorithm: The convolution algorithm is based on the BCMP theorem
but provides an easier way to determine the normalisation constant.

15

• Mean Value Analysis: The mean value analysis is a consequence of the convolution
algorithm, but no normalisation constant has to be computed here, because the mean
values of the desired results are determined iteratively.

There are also different methods for the approximative analysis of product form nets. The
reader is referred to [7] or [9] for details.

The product form solution on one hand is a very efficient way to get results, but on the other
hand, these methods impose strong constraints on the models. Therefore, we are searching
for more universal evaluation methods.

1.4.3 Markovian Analysis

The Markovian analysis is based on Markov chains (→ Chap. 1.3.1, p. 4). For this, the
model has to fulfil the Markov property like, for example, GSPNs (→ Chap. 1.3.3, p. 11).
Then, the model can be mapped to a homogeneous CTMC . This is done by, speaking in
terms of Petri nets, reducing the reachability graph (all markings that are reachable from
the initial marking) by removing all vanishing markings , i.e. markings that have at least
one enabled immediate transition. The resulting reduced reachability graph corresponds to a
homogeneous CTMC.

For example, if the two transitions of the Petri net in Figure 1.4 have exponentially distributed
firing times with firing rates µ1 and µ2, the resulting GSPN is isomorphic to the CTMC in
Figure 1.3.

As mentioned before, the transition rate matrix Q can be build directly using the transition
rates qi,j from state i to state j and the diagonal elements [1, 14]:

qi,i = −
∑

j 6=i

qi,j (1.16)

This leads to the following transition rate matrix for the CTMC in Figure 1.3:

Q =













−µ1 µ1 0 0 0
µ2 −µ1 − µ2 µ1 0 0
0 µ2 −µ1 − µ2 µ1 0
0 0 µ2 −µ1 − µ2 µ1

0 0 0 µ2 −µ2













(1.17)

The transition rate matrix Q can then be used to calculate the state probability vector π

[1, 14, 7]:

• transient analysis:

π(t)Q =
dπ(t)

dt
(1.18)

together with the initial probability vector π(0)= (π0(0), π1(0), . . .).

• steady-state / stationary analysis

πQ = 0 (1.19)

16

The major task is then to solve equation 1.18 or 1.19, which can be done in several ways:

• direct (exact) methods:

– steady-state: The homogeneous linear equation 1.19 can be directly solved by
using, e.g., the well known Gaussian elimination method [15, 7] or the Grassmann
algorithm, that is based on the Gaussian elimination method, but is less sensitive
to rounding and cancellation errors [7].

– transient: The solving of differential equation 1.18 is a very difficult task. It can
be done, e.g., for simple M/M/1-systems by using Bessel functions [16].

• numerical methods:

– steady-state:

∗ iterative numerical method [9, 14]

∗ recursive numerical method [9]

∗ power method [7, 10, 14]

∗ Jacobi method [7, 14]

∗ Gauss-Seidel method [7, 10]

∗ method of successive over-relaxation [7, 10]

– transient:

∗ standard, Fox-and-Glynn or stiff uniformisation [7, 10, 14]

As soon as the state probabilities are calculated, the marginal probabilities can be derived
and using these, all other performance measures can be calculated [9, 14].

The Markovian analysis is a very powerful and universal method for solving models that fulfil
the Markov property . Unfortunately, Markov chains are growing very fast with increasing
model size and therefore a lot of memory is needed for solving big models.

As mentioned before, Markov chains are not very convenient for being created as system
description directly by the analyst. But many high-level modelling packages include tools for
the automatic generation of the underlying Markov chain, that can then be solved mathe-
matically.

Another disadvantage is, that not all system behaviour can be adequately described with
exponentially distributed firing times and that only for a few non-Markovian Models there
exist numerical solutions, like DSPNs [2].

1.4.4 Discrete Event Simulation

The discrete event simulation (DES) does not make such high demands on the model that
has to be evaluated. The DES can deal with general as well as memoryless distributions.
Furthermore, it is able to handle very large models, it just takes more CPU time [18, 10].
In DES, the state of the system is still described by its marking, but in addition to that,
a continuous clock vector is introduced which describes the remaining firing times (RFTs ,
state sojourn times , transition clocks) [18, 12]. This extension makes the description of the
models state equivalent to a GSMP (→ Chap. 1.3.1, p. 4).

17

The execution of the discrete event simulation represents the dynamic behaviour of the model
and thus determines the desired values [1]. The following algorithm describes a simplified
simulation run [12]:

1. initialisation:

• set the global simulation clock to zero

• set the start state/marking of the Petri net

• define the termination event, e.g. a certain simulation length

2. determine the set of enabled transitions (goto step 8 if set is empty)

3. determine the firing time of each enabled transition by drawing a
sample from each associated probability distribution.

4. find the transition with the shortest remaining clock time (i.e. fir-
ing time) and increment the simulation clock. (The simulation
algorithm has to ensure, that there is only a single transition that
can fire at a certain time.)

5. goto step 8 if the termination event was reached

6. compute the new marking obtained by the firing of the transition
and the marking dependent results

7. continue with step 2

8. end of simulation, provide results

The simulation runs are repeated very often and/or the simulation length is very high, so
that it is ensured that every state of the model is reached many times. Then the relative
quantities of the occurrence of each state will approximate the state probabilities (Monte
Carlo method) [2, 19, 20].

The great advantage of DES is, that we can evaluate stochastic processes that are described
as GSMP. So we can theoretically use any distribution of firing times for modelling the
behaviour of the real system. Another advantage is, that the need for memory during the
computation is almost independent of the model size.

Unfortunately, the simulation of large models and models with rare events consumes a lot
of CPU time to obtain enough accuracy of results. Remedy may result from using different
speed-up methods like importance splitting [21, 10] or importance sampling [22, 10] techniques.
But more often non-Markovian system behaviour is approximated by Markovian models to
be able to use analytic-numerical solution methods.

18

1.5 Introduction to MOSEL-2

The MOdelling, Specification and Evaluation Language version 2 (MOSEL-2) was – like its
predecessor MOSEL [1] – developed at the University of Erlangen, Germany. In the beginning
of this work MOSEL-2 is available as version 2.1, that comprises all features presented in [2]
and [12].

The main idea behind MOSEL-2 is to provide a system description language that is:

• not evaluation tool- but system-oriented

• easy to understand and to easy to learn but powerful

• universally applicable but evaluation method independent

With other words, the user should not have to learn a new modelling language, just because
he has to change a single parameter (e.g. the distribution of a transition’s firing time) in his
system description and therefore has to change the evaluation method and tool as well.

MOSEL-2 does not provide implementations of methods for solving models - neither by
(numerical) analysis nor simulation. Rather, it comprises translators for several already
existing, well-tested and mature performance evaluation tools.

In this section, a brief introduction to the usage of MOSEL-2 will be given using a simple
example similar to the closed tandem network shown before (→ Fig. 1.4, p. 11).

Description of the rough work-flow of the performance evaluation procedure using MOSEL-2
(→ Fig. 1.9, p. 20) [23]:

1. Inspecting the real system, the modeller builds a high-level, textual system description
using the MOSEL-2 specification language1. Furthermore, he specifies the desired per-
formance and/or reliability measures. This description is used as an input file for the
MOSEL-2 environment (→ Chap. 1.5.1, p. 21).

2. The MOSEL-2 environment checks the input file for syntactical and semantical errors.
If no error occurred, the MOSEL-2 model gets translated to the system description of
the evaluation tool selected by the user.

3. The chosen tool is started by the MOSEL-2 environment.

4. The tool evaluates the model by using numerical analysis methods or discrete event
simulation (→ Chap. 1.5.2, p. 22).

5. After the evaluation the tool saves its results in one or more tool-specific output files.

6. The MOSEL-2 environment parses the tool-specific output file(s) and provides the
results in a single textual and, if specified, graphical result file (→ Chap. 1.5.3, p. 23).

1If the system is very complex, he might draw an abstract conceptual model using graphical syntax,
e.g. queueing networks or Petri nets, beforehand.

19

Figure 1.9: The modelling and analysis process in the MOSEL-2 environment.

20

1.5.1 System Description in MOSEL-2

We will now do step one, and build a possible description of the closed tandem network
(→ Fig. 1.4, p. 11) in MOSEL-2. can be2:

1 CONST rate := 4; /* rate of first transition */

2 CONST delay := 0.5; /* delay of second transition */

3 CONST tokens := 3; /* number of tokens in closed system */

4 CONST init1 := 2; /* initial number of tokens in place1 */

5 CONST init2 := tokens-init1; /* initial number of tokens in place2 */

6 NODE place1[tokens] := init1; /* ’place1’ with capacity ’tokens’ *

7 * and ’init1’ initial tokens */

8 NODE place2[tokens] := init2; /* ’place2’ with capacity ’tokens’ *

9 * and ’init2’ initial tokens */

10 ASSERT place1 + place2 = tokens; /* the number of tokens in the system *

11 * always has to be ’tokens’ */

12 FROM place1 TO place2 RATE rate; /* expon. transition from ’place1’ to *

13 * ’place2’ with parameter ’rate’ */

14 FROM place2 TO place1 AFTER delay; /* determ. transit. from ’place2’ to *

15 * ’place1’ with parameter ’delay’ */

16 PRINT avg_no_of_tokens_in_place1 := MEAN(place1);

17 PRINT avg_no_of_tokens_in_place2 := MEAN(place2);

18 PRINT usage_of_place1 := PROB(place1 != 0);

19 PRINT usage_of_place2 := PROB(place2 != 0);

20 PRINT DIST place1;

21 PICTURE "token distribution of place1"

22 CURVE DIST place1

23 YLABEL "PROB"

24 XLABEL "Number of Jobs"

The MOSEL-2 model description can be divided into six parts:

• constant and parameter part (lines 1 to 5)

• node part (lines 6 to 11)

• function and condition part (unused)

• rule part (lines 12 to 15)

• result part (lines 16 to 20)

• picture part (lines 21 to 24)

A more detailed description of the MOSEL-2 syntax and semantics can be found in [2].
MOSEL-2 language extensions for supporting non-Markovian distributions, that can be eval-
uated with the help of SPNP 6.1.2a simulation (→ Chap. 1.5.2, p. 22), are provided in [12].

2The line numbers specified in the first column are not part of the MOSEL-2 model description. They only
serve referencing.

21

1.5.2 Evaluation Methods

MOSEL-2 is available as version 2.1. MOSEL-2 2.1 is able to use the following evaluation
tools:

• MOSES [25]

• TimeNET (version 3.0) [2, 24]

• SPNP (version 6.1.2a) [12, 10]

The evaluation tools and methods that can actually be used, depend on the type of the model
(→ Chap. 1.4, p. 14) [2, 10]:

Type of MOSES SPNP TimeNET
Model Result num. ana. num. ana. DES num. ana. DES

stationary X1 X2 X X X
GSPN

transient - X3 X X X

stationary - - X X4 X
DSPN

transient - - X X4 X

stationary - - -5 ?6 X
eDSPN

transient - - -5 - X

stationary - - X7 - -
ESPN

transient - - X7 - -

There are further restrictions affecting the applicability of the different tools. See [2] for
details.

The user can specify the desired tool and its options while invoking the MOSEL-2 environment
from command line , e.g. with:

mosel2 -csk -o +SIMULATION tandem.mos

For a list and description of all command line options see [2] or [12] or call MOSEL-2 with
option “-h”.

1Methods: power (= Jacobi), power2 (= Gauss Seidel), LPU (default), Crout and Grassmann [25]
2Methods: SOR, Gauss Seidel and power [10]
3Methods: standard uniformisation, Fox and Glynn uniformisation, stiff uniformisation [10]
4At most one non-exponential timed transition may be enabled at any time. (But DSPNs with several

deterministic transitions enabled at the same time can be approximatively evaluated.) [2]
5The uniform distribution did not work in SPNP 6.1.2a. [12]
6According to [2], the steady-state analysis of a model containing uniform distributions should be possible,

if not more than one uniform or deterministic transition is enabled at any time. The evaluation of such models
is neither forbidden by MOSEL-2 2.1 nor by TimeNET. Nevertheless, no results could be obtained even for
very simple models (“Error in StatAnalysis/src/erand.c: Segmentation fault”).

7The following SPNP 6.1.2a distributions besides DSPN distributions are supported by MOSEL-2 2.1: beta,
Cauchy, deterministic, gamma, geometric, hyperexponential, hypoexponential, lognormal, normal, Pareto,
Poisson. [12]

22

Simulation of "tandem2.mos" by SPNP (length: 1000, runs: 1000)

Results:

avg_no_of_tokens_in_place1 = 1.258

avg_no_of_tokens_in_place2 = 1.742

usage_of_place1 = 1

usage_of_place2 = 0.964

Distribution of "place1":

P{place1 = 0} = 0

P{place1 = 1} = 0.778

P{place1 = 2} = 0.186

P{place1 = 3} = 0.036

Figure 1.10: Textual tandem network results (tandem.res).

1.5.3 Results

The results can be provided in two different ways as specified in the result and picture part:
textual (→ Fig. 1.10, p. 23) and graphical (→ Fig. 1.11, p. 23).

token distribution of place1

Number of Jobs

PROB

0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

place1

Figure 1.11: Graphical tandem network results (tandem.igl).

23

1.6 Mobile Communication Systems

Mobile communication systems can be categorised by several attributes:

• dimension, scale, distance between processors [26, 27]:

– up to approx. 2 m: personal area network (PAN)

– up to approx. 1 km: local area network (LAN)

– up to approx. 10 km: metropolitan area network (MAN)

– up to approx. 1000 km: wide area network (WAN)

• transmission technology [26, 27]:

– broadcast

– multicast

– unicast

– point-to-point

• usage

• protocol

• speed

• type of data

As an example we will focus on the GSM/GPRS mobile system and use MOSEL-2 later to
model and evaluate the air interface of a single GSM/GPRS cell, which can be considered as
the “bottleneck” of the GSM/GPRS system.

In this section a short introduction into these mobile communication technologies will be
given: In Sections 1.6.1 to 1.6.4 the different generations of mobile phone systems are de-
scribed. Generation 2.5 (2.5G) includes the GSM/GPRS technology.

1.6.1 1G: Analog Cellular Mobile Radio Telephone

Wireless telephone systems can be divided into two groups: mobile telephone systems and
cordless telephone systems. Cordless telephones usually consist of a base station and a
telephone, both used together in a single building. The range between those to parts is
up to 300 meters and most systems are nowadays following the DECT standard [27].

However, we are interested in mobile telephone systems. The currently most popular mobile
telephone system GSM (→ Chap. 1.6.2, p. 25) is a successor of the first cellular mobile radio
telephone systems that used analog voice signalling.

24

Examples of this first analog systems, that are also referred to as first generation (1G) mobile
phone systems, are:

• mobile radio telephone system (early 20th century, e.g. CB-radio) [27]: single channel,
i.e. only sending or receiving exclusively

• improved mobile telephone system (IMTS , 1960, USA) [27]: big cells (100km), only 23
channels but 2 frequencies, one for sending and one for receiving

• A-Netz (1958, Germany) [3]: connection establishment from mobile phone only

• B-Netz (1972, Germany, Austria, Netherlands, Luxembourg) [3]: connection establish-
ment also from fixed network if location of mobile phone is known

• advanced mobile phone system (AMPS , 1982, USA, Great Britain (TACS), Japan
(MCS-L1)) [27, 26, 3]: smaller cells (10-20km) allow lower transmission power and
closer reuse of frequencies (cell concept , space division multiple access , SDMA), 832
full-duplex channels by frequency division multiple access (FDMA)

• C-Netz (1986, Germany) [3]: digital signalling (but still analog voice transmission),
handover possible

1.6.2 2G: AMPS, CDMA and GSM

The first systems using digital voice signalling are often referred to as second generation (2G)
mobile phone systems. The introduction of digital mobile phones was done in two different
ways in Europe and the USA.

Launch of AMPS and CDMA

All over the USA, a single analog system (AMPS) existed. The second generation of this
system is the backward compatible D-AMPS [26]. D-AMPS was introduced in 1991 based
on the standards IS-54 and IS-135, but parallel several competitors tried to introduce their
own standards. The only standard that survived besides D-AMPS is IS-95, the code divi-
sion multiple access (CDMA) variant which is based on direct sequence spread spectrum
(→ Chap. 1.6.4, p. 32) [3, 26, 27]. A modified form of D-AMPS named PDC is in use in
Japan since 1993 [3, 26].

Launch of GSM

In Europe, it was just the other way round: Almost every country had its own analog system.
Therefore, the telecommunication authorities of all European countries agreed on building a
common digital system from scratch without compromises for backward compatibility, called
GSM (now: global system for mobile communication) [27]. The first specifications were
already done in 1982 by the Groupe Spéciale Mobile [3]. Later, GSM was developed and
standardised by the European Telecommunications Standards Institute (ETSI) [30]. The
first countries started using GSM in 1992 [3].

25

Nowadays, almost all countries in the world (except the USA, Japan and perhaps some
smaller countries) are using GSM. Even in the USA it achieves some acceptance [26].

Specification of GSM

Due to the fact, that the whole GSM specification extents over 5000 pages [26], we will only
have a look at the basic concepts – mainly of the physical and medium access layer – that
are necessary to understand the air interface that will be modelled later.

FDMA: In Germany (and several other countries), four ultra high frequency (UHF , 0.3-3
GHz) bands are reserved for GSM [3, 26]:

• 890-915 MHz: D-Netz uplink

• 935-960 MHz: D-Netz downlink

• 1710-1758 MHz: E-Netz uplink

• 1805-1880 MHz: E-Netz downlink

The 1800 MHz bands were added later in 1994 [3]. The corresponding system is called DCS
1800, but it is essentially GSM [27].

The division of a frequency band into distinct bands for uplink and downlink is called fre-
quency division duplex (FDD) [3] in opposite to time division duplex (TDD), where uplink
and downlink use the same frequency but different TDMA time slots (see below).

Each frequency band is divided into 124 carrier frequencies with 200 kHz bandwidth [26]. The
division of the whole base band into several carrier frequencies is called frequency division
multiplexing (FDM). Because in mobile phone systems the multiplexing is used to handle the
medium access, i.e. the sharing of the frequency resources among users, we call this method
frequency division multiple access (FDMA) [3].

Theoretically, this would allow 2 x 124 full duplex communication channels system-wide,
which is definitively not enough. Therefore, more multiplexing techniques are used.

TDMA: The digital encoding of the voice connections allows the transmission of the voice
data in smaller, compressed packages. Thus, we do not need a continuous voice connection
but only a continuous stream of voice packets with high frequency. This allows us to split a
single carrier frequency into consecutive frames of eight time slots . Each of these time slots
can be used by a different user. The merged time slots of a single user form the physical
channel of this user. This concept is called time division multiple access (TDMA) and is
demonstrated in Figure 1.12.

Frames are organised in a frame hierarchy (multi-frames, super-frames and hyper-frames),
but this hierarchy is not in the focus of this thesis. See [27], [26] or [3] for details.

Now 2 x 992 full duplex communication channels are available system-wide.

26

.

{ {
{

TDMA frame TDMA frame

slot

.
physical channel:

carrier frequency:

31 12 24 5 6 7 8 3 4 5 6 7 8 1 27 8

2 2 2

Figure 1.12: Time division multiple access.

Each carrier frequency can transmit 270883 bit/s. This is shared among eight users, so
each user gets a gross data rate of about 33.9 kbit/s. After considering overhead and error
correction, only 13 kbit/s are available for the voice connection over a single physical channel
[26].

If the physical channel is used for a circuit switched data-over-GSM connection, which was
introduced in autumn 1994, then only 9.6 kbit/s were available at first. Nowadays, data-
over-GSM connections reach 14.4 kbit/s by using more efficient error correction methods,
that were introduced in summer 2000 by the first German providers [3, 29].

SDMA: GSM also uses space division multiple access (SDMA). The whole area, that
should be covered by the service, gets divided into small parts, called cells (cell concept).
Each cell has its own base transceiver station (BTS), which is the fixed counterpart of the
mobile station, the antenna of the service provider [3]. Every cell can now use a subset of
all carrier frequencies. This subset can be reused in cells, that are far enough away to avoid
mutual interference.

In Figure 1.13 28 GSM cells are shown that are using seven different sets of carrier frequencies
(A-G). Adjacent cells may not use the same frequencies. Therefore, we can assemble seven
cells to a so called cluster . In each cluster all frequencies can be used, providing that no
frequency is used by different cells of one cluster.

The SDMA method is quite flexible, because not only the size of the cells but also the number
of cells per cluster (i.e. the cluster size) can be changed according to the number of users in
a certain area [3, 26].

27

A

B

C

D

E

F

G A

B

C

D

E

F

G

A

B

C

D

E

F

G A

B

C

D

E

F

G

Figure 1.13: 28 GSM cells in 4 clusters of size 7.

1.6.3 2.5G: GSM with HSCSD, GPRS and EDGE

Several extensions were made to GSM to improve its versatility. The extended GSM is referred
to as Generation 2.5 (2.5G), because the new concepts enhance GSM with features planned
for the third generation (→ Chap. 1.6.4, p. 32). Most extensions aim on higher efficiency and
higher bit rate for data transmission.

HSCSD

The high-speed circuit switched data (HSCSD) concept was introduced by the first providers
in 1999. With HSCSD a user is allowed to use up to four physical channels for his data
connection, if available. Therefore, he is able to achieve a gross data rate of up to 57.6
kbit/s. Of course, the allocated channels can only be used by this user, who has to pay for
it – even if the connection is idle. [29, 3]

GPRS

In contrast to the circuit switched data connections above, the general packet radio service
(GPRS) uses packet switched data transfer. GPRS was like GSM standardised by ETSI. It
was introduced in Germany in 2000 [28, 29].

With GPRS one or several physical channels can be used for data packet transmissions by
one or several users. A physical channel, that is used for GPRS traffic is called packet data
channel (PDCH) [28]. The number of physical channels that may be used by the GPRS
system as PDCH is specified in the partitioning scheme .

28

scheme remaining data rate

CS-1 9.05 kbit/s
CS-2 13.4 kbit/s
CS-3 15.5 kbit/s
CS-4 21.4 kbit/s

Table 1.1: GPRS coding schemes

Three different partition schemes can be used [28]:

• Complete partitioning : Some of the eight physical channels are dedicated to ordinary,
circuit switched GSM connections (voice or data). The remaining channels are reserved
for GPRS connections. This scheme is very inflexible, because unused channels of one
service cannot be used by the other service.

• Complete sharing : Any unused physical channels may be allocated by a conventional
GSM or by a GPRS connection. Normally GSM connections are given higher priority
than GPRS connections, so PDCHs can be displaced by GSM connections.

• Partial sharing : This scheme is a mixture of complete partitioning and complete shar-
ing. Some physical channels are reserved for conventional GSM, some for GPRS. The
remaining channels may be used by both, whereas GSM connections again have higher
priority.

Obviously, a single carrier frequency can provide a maximum of eight PDCHs. Even if a BTS
provides several frequencies for its cell, a mobile station can only use up to eight PDCHs
simultaneously, because the mobile stations are normally only able to handle a single carrier
frequency for uplink and a single one for downlink.

The GPRS data rate a single PDCH will offer to the users cannot be easily specified. It
depends on several factors [28, 31, 27]:

• The gross data rate of a single PDCH is 21.4 kbit/s. This includes the overheads for
the GSM physical layer (synchronisation, guard times) and for the GPRS air interface.

• The forward error correction (FEC) channel coding is done dynamically depending on
the current radio conditions. The four different GPRS coding schemes are shown in
Table 1.1.

• The automatic repeat request (ARQ) protocol of GPRS consumes more bandwidth if
necessary.

• More overhead is produced by higher and partly application specific protocol layers.

For this thesis we assume ideal radio conditions and therefore a data rate of 21.4 kbit/s
per PDCH. We do not take higher protocol layers into account to provide results that are
independent from certain applications. As mentioned before, a single user may be granted
up to eight PDCHs for sending GPRS data. Therefore, the maximum data rate a single user

29

reliability lost SDU1 duplicate SDU out of sequence corrupt SDU
class probability probability SDU probability probability

1 10−9 10−9 10−9 10−9

2 10−4 10−5 10−5 10−6

3 10−2 10−5 10−5 10−2

Table 1.2: GPRS reliability classes

delay SDU size 128 byte SDU size 1024 byte
class mean 95 percentile mean 95 percentile

1 < 0.5s < 1.5s < 2s < 7s
2 < 5s < 25s < 15s < 75s
3 < 50s < 250s < 75s < 375s
4 unspecified

Table 1.3: GPRS delay classes

can obtain is 171.2 kbit/s, but this situation will be very unlikely. Including higher layers, a
user will in practice achieve a maximum data rate of about 43.2 kbit/s [34].

Each carrier frequency can only handle up to 32 GPRS data connections (temporary block
flows , TBFs , sessions) simultaneously, because the TBFs are internally identified by a TFI
(temporary flow identity) of 5 bit length [28].

Whether a connection request can be accepted is decided by a call admission control (CAC)
[28] algorithm according to the partitioning scheme, quality of service (QoS) requirements
and further criteria. The QoS requirements are defined when the session is set up and stored
in a session specific parameter set called packet data protocol (PDP) [31]. They can be
specified by the user regarding [3]:

• service precedence (high, medium, low)

• user data throughput

• reliability class (→ Table 1.2, p. 30)

• delay class (→ Table 1.3, p. 30)

Several possible modifications to GSM/GPRS were developed to improve its performance.
Two of them, EDGE and DOVE will be described next.

1
SDU : service data unit , i.e. single GPRS data packet.

30

EDGE

In 2004, 75 mobile network providers in 50 countries intend to introduce the enhanced data
(rates) for GSM/global evolution (EDGE) technology [29, 32, 26, 33]. EDGE provides a new
physical layer and can be introduced in two different ways [32]:

• To improve the circuit switched data transfer over GSM like HSCSD: enhanced circuit-
switched data (ECSD).

• For improving GPRS: enhanced GPRS (EGPRS)

We will only have a brief look at the latter way in this thesis and will refer to it as EDGE.

EDGE provides data rates up to 384 kbit/s (theoretically up to 473.6 kbit/s on the physical
layer) by introducing new modulation techniques, error-tolerant transmission methods and
improved link adaption mechanisms [32]. But practically, including all overhead of higher
layers, a user will see a maximum data rate of about 118.4 kbit/s (downlink) [33].

The main improvement of the data rates is done by changing the modulation technique
[32, 26]: Conventional GPRS used Gaussian minimum shift keying (GMSK), which is a kind
of phase modulation . Using GMSK each shift in the phase (symbol, baud) represents one
bit. EDGE uses 8-phase shift keying (8PSK). Here, every shift in phase can represent three
bits. The data rate is therefore increased by factor three. The disadvantage is, that the
“distance” between the single symbols is shorter, i.e. symbols might be misinterpreted more
easily, especially in very poor radio conditions, where GMSK will show better performance.
Therefore, EDGE provides nine different modulated coding schemes (MCS), the lower four
(MCS1-MCS4) using GMSK, the upper five (MCS5-MCS9) using 8PSK. The data rates of
the EDGE coding schemes MCS1-MCS4 are slightly higher than the data rates of the GPRS
coding schemes CS1-CS4 because of differences in the header and payload sizes.

EDGE furthermore provides re-segmentation for retransmitting packets in a lower coding
scheme if the transmission failed because of decreasing radio conditions. Therefore, the link-
controlling algorithm, which chooses the coding scheme for the next sequence of data packets,
can be more aggressive. Further enhancements like addressing window improvements, greater
measurement accuracy and the improved interleaving procedure are described in [32].

DOVE

The delay of voice end-user (DOVE) [35, 36] is a theoretical concept to enhance the efficiency
of existing GSM/(E)GPRS networks by modifying the CAC algorithm.

Consider a GSM/GPRS system with GSM voice and GPRS data service sharing the GSM
TDMA slots obeying a complete partitioning scheme and imagine a high utilisation of the
voice service. Then the GPRS data rates will decrease drastically, because the voice service
has higher priority and displaces the data service. DOVE tries to decrease this effect by
delaying an arriving voice connection request from taking away the last PDCH from GPRS.
The delay will be short enough, so that it will be accepted by the user.

31

Nevertheless, this short delay will have two effects:

• In the meantime the data service is able to operate and the data rate will therefore not
decrease that fast.

• Another voice connection may terminate and the released resources can be used by the
waiting voice connection instead of displacing the PDCH.

The quantitative impact of this concept on the data rate will be discussed in Chapter 2.1.2.

1.6.4 3G: UMTS

The Universal Mobile Telecommunications System (UMTS) is another name for the third
generation (3G) technology wide-band CDMA (W-CDMA). The W-CDMA technology was
suggested by Ericsson as a possible implementation of the first 3G considerations called
IMT3-2000 made by the International Telecommunication Union (ITU) in 1992 [26]. W-
CDMA/UMTS could stand up to the competitor CDMA2000 , suggested by Qualcom [29, 26].
UMTS gets standardised by the Third Generation Partnership Project (3GPP), which was
founded in 1998 and consists of several “organisational partners” including ETSI [29, 38].

Nowadays, the first mobile networks “support UMTS”, the first UMTS mobile phones are sold
and the UMTS specification still enjoys frequent releases [39, 40]. Beginning with “Release
99” [37] they aim at introducing the third generation of mobile systems by partly reusing
GSM infrastructure and partly building new technology from scratch.

One of the first improvements implemented was the third generation air interface called
UMTS Terrestrial Radio Access Network (UTRAN). As mentioned above, UMTS/UTRAN
uses W-CDMA as medium access method. W-CDMA is a variant of CDMA with a bandwidth
of 5 MHz. The CDMA method will be explained in the next section:

CDMA: Code Division Multiple Access

The code division multiple access (CDMA) is yet another multiplexing technique for medium
access that was developed by Qualcom. CDMA is not used together with but instead of
FDMA and TDMA (except “some” FDMA for the cell concept). Therefore in CDMA, every
mobile station sends and receives at the same time on the same frequency band. The sep-
aration of information is done by different, mobile station specific coding of the logical bits
by using several so called chip sequences , which are vectors of bipolar bits, i.e. the logical 0
is represented by -1 and the logical 1 is represented by +1. The chip sequence of all mobile
stations are unique (for each frequency band) and orthogonal to each other. Each bit a mobile
station wants to send or receive gets represented by the chip sequence (in case of a logical 1)
or its negation (in case of a logical 0). If several senders transmit data at the same time, their
transmissions get superposed. The receiver can restore the information of a specific sender
by using the senders chip sequence.

3International Mobile Telecommunications

32

Example: Imagine two senders: S1 and S2. The chip sequence of sender S1 is C1 =
(+1,+1,−1,−1). The chip sequence of sender S2 is C2 = (−1,+1,−1,+1). Sender S1

wants to transmit the information B1 = 1 and S2 wants to send information B2 = 0. The
information B1 is encoded by sender S1 using its chip sequence C1, which results to the
encoded information E1 = C1 = (+1,+1,−1,−1). Sender S2 encodes B2 by using chip
sequence C2, which results to E2 = C2 = (+1,−1,+1,−1). The encoded information E1 and
E2 will then be sent by S1 and S2, respectively. A possible receiver R3 will pick up the overlay
of both transmissions: E3 = E1 +E2 = (+1,+1,−1,−1)+ (+1,−1,+1,−1) = (+2, 0, 0,−2).
If the receiver R3 wants to decode E3 to get the information sent by S1, he calculates the
normalised inner product E3•C1 = (+2)·(+1)

4 + (0)·(+1)
4 + (0)·(−1)

4 + (−2)·(−1)
4 = 0.5+0+0+0.5 =

+1 The result tells R3 that S1 sent information B1 = 1. If R3 wants to get the information
sent by S2 he uses C2 instead of C1: E3 • C2 = (+2)·(−1)

4 + (0)·(+1)
4 + (0)·(−1)

4 + (−2)·(+1)
4 =

−0.5 + 0 − 0 − 0.5 = −1 ⇒ S2 sent information B2 = 0.

More detailed information about the CDMA algorithm can be found in [27], [26] or [3].

The number of users CDMA can handle depends on the number of chips per chip sequence, but
the higher the number of chips per sequence the more chips have to be send for transmitting
one bit. This more of information can only be handled, if the available bandwidth is increased
by the factor chips per sequence (spread spectrum method).

Using W-CDMA a maximum chip rate of 3,84 Mchip/s can be achieved, theoretically. This
allows bit-rates up to 2Mbit/s, under good radio conditions and presuming a non-moving
“mobile” station located in a so called “Hot Spot” [29, 37].

The description and rating of further UMTS features would go far beyond the scope of this
thesis. We refer the interested reader to [3], [37] and [40].

33

34

Chapter 2

Modelling and Evaluation of Mobile
Systems with MOSEL-2

We will now use MOSEL-2 to examine the air interface (downlink) of a single GSM/GPRS
(→ Chap. 1.6.3, p. 28) cell which can be considered as the “bottleneck” of the GSM/GPRS
system. Before building the MOSEL-2 model description, we will abstract from the real
system by building conceptual models using Petri nets (→ Chap. 1.3.3, p. 11).

2.1 Markovian Approach

We will only use Markovian distributions (→ Chap. 1.3.1, p. 4) for our models in the begin-
ning. This will keep the models small and concise. The models can then be represented as
GSPNs (→ Chap. 1.3.3, p. 11).

2.1.1 GSM System

We consider a pure GSM network as introduced before (→ Chap. 1.6.2, p. 26) and observe the
behaviour of a single GSM cell with a single carrier frequency, which results in a maximum
of eight available TDMA channels. Later we could easily extend that model to take into
account additional carrier frequencies and/or handovers from adjacent cells. Anyway, we will
not take handovers and retrials into account in this thesis. The interested reader is referred
to [28], [31], [41] and [42].

35

voice in

voice fin

t1

p1

TDMA channels

t2

Figure 2.1: Conceptual GSPN model of GSM air interface.

Conceptual Model

A possible conceptual representation of the abstracted air interface of a single GSM cell by
a GSPN is shown in Figure 2.1:

• Arrival process: New voice connection requests (voice calls or data-over-GSM) arrive
according to a Poisson process. This is represented by transition t1 which has an
exponentially distributed firing rate (0.005 . . . 0.015). We assume a high and therefore
approximately constant number of potential users per cell. Therefore, similar to [41]
and [42], we do not take into account the state dependency of the arrival process, i.e. we
do not consider the dependency of the arrival rate from the (quite constant) number of
idle users in the cell at is it done for example in [28].

• Unless all eight TDMA channels are occupied, the requested voice connection gets
established. Each voice connection uses a single TDMA channel. Voice connections in
service are equivalent to tokens located in place p1, which has a maximum capacity of
eight. If the capacity is reached, t1 gets disabled by the inhibitor arc with multiplicity
eight. In this case, new connection requests are ignored and get lost.

• Service process: As in several related publications [41, 28, 31], we assume independent
service processes with exponentially distributed call holding times with a mean duration
of 100 seconds and therefore a mean service rate for transition t2 of 1/100 per active
connection (infinite server). Therefore, the service rate of t2 is state-dependent: it
depends on the current number of tokens in place p1.

36

The underlying Markov Chain

The simple GSM system can be seen as loss system with finite capacity C = 8. Its state
space can be described by a stochastic process X(t) = C(t), where C(t) is the number of
active connections at time t. Because of the memoryless property of all state changes, the
stochastic process can be described as a CTMC (→ Chap. 1.3.1, p. 4). The CTMC can
then be solved as described in Chapter 1.4.3. This can be done automatically and therefore
very comfortably by using MOSEL-2 (→ Chap. 1.5, p. 19), especially when the models are
growing more complex later.

The MOSEL-2 Model

We will now describe the GSPN model of the simple GSM system with the help of the
MOSEL-2 modelling language:

1 /** CONSTANT AND PARAMETER PART ***/

2 // user behaviour

3 PARAMETER v_ar := 0.005 .. 0.015 STEP 0.002; /* mean voice call arrival rate */

4 CONST v_ht := 100; /* mean voice call holding time */

5 CONST v_sr := 1/v_ht; /* mean voice call service rate */

6

7 // network configuration

8 CONST freq_c := 1; /* carrier frequencies in cell */

9 CONST chans_f := 8; /* physical channels per freq. */

10 CONST chans := freq_c * chans_f; /* overall numb. of channels */

11

12 /** NODE PART ***/

13 NODE p1[chans] := 0; /* p1 */

14

15 /** RULE PART ***/

16 FROM EXTERN TO p1 RATE v_ar; /* t1 */

17 FROM p1 TO EXTERN RATE v_sr * p1; /* t2 */

18

Note, that we do not have to specify the inhibitor arc explicitly in MOSEL-2. The capacity
of place p1 is well defined and cannot be exceeded.

In addition to the model architecture and behaviour, MOSEL-2 allows to specify the de-
sired result measures. We are mainly interested in the probability of unsatisfied connection
requests:

19 /** RESULT PART ***/

20 PRINT v_loss := PROB(p1==chans); /* voice call loss probability */

21

22 /** PICTURE PART **/

23 PICTURE "voice call loss probability"

24 PARAMETER v_ar

25 CURVE v_loss

26 XLABEL "voice call arrival rate"

27 YLABEL "voice call loss probability"

37

voice call arrival rate

voice call loss probability

0.005 0.007 0.009 0.011 0.013 0.015 0.017

0

2e-05

4e-05

6e-05

8e-05

0.0001

0.00012

0.00014

0.00016

v_loss

Figure 2.2: GSM: voice call loss probability versus voice call arrival rate.

Model Evaluation

We are using the MOSEL-2 evaluation environment to translate the MOSEL-2 model into the
c-based stochastic Petri net language (CSPL), which acts as input for SPNP [10]. SPNP then
transforms the CSPL models into a CTMC and performs the steady-state analysis. Finally,
the results of SPNP get parsed by MOSEL-2 and are presented in a tool-independent format.

Performance of the Evaluation Methods: To get a feeling for the time exposure of
different evaluation methods and model sizes, we provide information about the duration of
every model presented and evaluated in this thesis from now on. The duration measures
where obtained using the Linux program time(1). All models were evaluated using a dual
i686 PC with i386-Linux (kernel 2.4.23), two Intel r© XEON TM CPUs (2 × 2.2 GHz) and 2
Gbyte RAM.

The model above was evaluated within 0.680s/0.270s/0.940s (user/system/real).

Results

The graphical results of our GSM evaluation are shown in Figure 2.2.

38

voice in data in

voice fin data fin

t1

t3 p2

p1

TDMA channels

t4

t2

Figure 2.3: Conceptual GSPN model of GSM/GPRS system.

2.1.2 GPRS System

We will now extend the GSM model introduced above by adding GPRS.

Conceptual Model

The conceptual model is shown in Figure 2.3.

In addition to the GSM model we now have:

• Burst arrival process: We model the GPRS data service on burst level. The data bursts
arrive according to a Poisson process modelled by transition t3, which has exponentially
distributed firing rate (0.1 . . . 2.5).

• An overall number of 32 bursts per carrier frequency can be accepted for being serviced
in place p2 (→ Chap. 1.6.3, p. 28). Furthermore, PDCHs can be preempted by arriving
GSM calls, which have higher priority. One TDMA channel is reserved to GPRS, which
leads to a partial sharing scheme (→ Chap. 1.6.3, p. 28) without reservations for voice
calls. Therefore, the capacity of place p1 decreases by one from eight to seven.

• Burst service process: Similar to [28] we assume, that the burst size is geometrically
distributed with a mean burst size of 10 kbyte. Furthermore, we assume good radio
conditions (CS-4) and therefore a data rate of 21.4 kbit/s per PDCH. The burst rate
of a single PDCH is then equal to 21.4

8·10 . The burst rate of all PDCHs is divided among
all GPRS users and modelled by t4, which is comparable to processor sharing (PS).

• The simultaneous use of GSM and GPRS within the same pool of TDMA channels
(cell) requires the use of two channels for signalling [35, 28]. So we can only use up to
five channels for GSM voice connections.

39

MOSEL-2 Model

1 /** CONSTANT AND PARAMETER PART ***/

2 // GSM user behaviour

3 PARAMETER v_ar := 0.005 .. 0.015 STEP 0.002; /* mean voice call arrival rate */

4 CONST v_ht := 100; /* mean voice call holding time */

5 CONST v_sr := 1/v_ht; /* mean voice call service rate */

6

7 // GPRS data behaviour

8 PARAMETER d_ar := 0.1, 1.5, 2.5; /* mean data burst arrival rate */

9 CONST d_sz := 10 * 8; /* mean data burst size (kbit) */

10

11 // network configuration

12 CONST freq_c := 1; /* carrier frequencies in cell */

13 CONST chans_f := 8; /* physical channels per freq. */

14 CONST chans := freq_c*chans_f; /* overall numb. of channels */

15 CONST chans_sig := 2; /* channels used for signalling */

16 CONST chans_use := chans-chans_sig; /* channels available for users */

17 CONST chans_gpr := 1; /* channels reserved for GPRS */

18 CONST chans_gsm := chans_use - chans_gpr; /* max. numb. of voice channels */

19 CONST gprs_max := 32 * freq_c; /* maximum number of GPRS users */

20 CONST pdch_dr := 21.4; /* data rate per PDCH (kbit/s) */

21 CONST burst_sr := pdch_dr/d_sz; /* burst service rate per PDCH */

22

23 /** NODE PART ***/

24 NODE p1[chans_gsm] := 0; /* p1 */

25 NODE p2[gprs_max] := 0; /* p2 */

26

27 /** RULE PART ***/

28 FROM EXTERN TO p1 RATE v_ar; /* t1 */

29 FROM p1 TO EXTERN RATE v_sr * p1; /* t2 */

30 FROM EXTERN TO p2 RATE d_ar; /* t3 */

31 FROM p2 TO EXTERN RATE burst_sr * (chans_use - p1); /* t4 */

32

33 /** RESULT PART ***/

34 PRINT v_loss := PROB(p1==chans_gsm); /* voice call loss probability */

35 PRINT d_loss := PROB(p2==gprs_max); /* data burst loss probability */

36

37 /** PICTURE PART **/

38 PICTURE "call/burst loss probability"

39 PARAMETER v_ar

40 CURVE v_loss

41 CURVE d_loss

42 XLABEL "voice call arrival rate"

43 YLABEL "call/burst loss probability"

Model Evaluation

The model evaluation using MOSEL-2 with SPNP and steady-state numerical analysis took
2.600s/0.630s/3.210s (user/system/real).

Results

The graphical results of our GSM/GPRS model are shown in Figure 2.4. We can see, that the
voice call loss probability is much higher compared to a pure GSM system (→ Fig. 2.2, p. 38),
which is obvious, because three channels are now reserved for signalling and GPRS. However,
the utilisation of the GPRS service has no influence on the GSM service. In contrast, the
dependency of the data service from the voice utilisation is evident.

40

voice call arrival rate

call/burst loss probability

0.005 0.007 0.009 0.011 0.013 0.015 0.017

0

0.005

0.01

0.015

0.02

0.025

v_loss

(d_ar = 0.5, 0.7, 0.9)

d_loss (d_ar = 0.5)

d_loss (d_ar = 0.7)

d_loss (d_ar = 0.9)

Figure 2.4: GPRS: voice call and data burst loss probability versus voice call arrival rate.

41

voice in data in

voice fin data fin

t1

t3 p2

p1

TDMA channels

t4

t2t5

p3

t6

Figure 2.5: Conceptual GSPN model of GSM/GPRS system with DeTVoC.

2.1.3 Refining the GPRS Model: DeTVoC

Until now, we assumed that GSM voice connection requests that cannot be served immedi-
ately are lost an once. But in reality the user will at least wait a few seconds, hoping that
he still might be served. We call this behaviour delay tolerant voice call (DeTVoC).

Conceptual Model

DeTVoC can be modelled as shown in Figure 2.5.

Additional elements:

• Arriving voice connection requests (t1) are now transfered to place p3, where they can
wait for being served. Place p3 has a high but finite capacity (e.g. 100) for keeping the
state space finite and tractable. Calls arriving at p3 can be assigned to a free TDMA
channel immediately by transition t5, if available. Otherwise, the call has to wait in
place p3.

• A user will not wait endlessly for the acceptance of his connection request. The maxi-
mum time a user will wait is modelled by the (infinite server) transition t6, which has
an exponentially distributed firing rate to keep the model Markovian.

• We can now differentiate between the call loss probability, i.e. the probability that a
call does not get served at all, and the call blocking probability, i.e. the probability that
a call cannot be served immediately.

42

• The voice call loss probability Ploss (v loss) gets calculated as:

Ploss = 1 − Pserved = 1 − λS

λI

(2.1)

with:

– λS : rate of served connection requests (t2)

– λI : rate of incoming calls (arrival process t1)

This calculation requires that place p3 does not reach its capacity.

• The call blocking probability equals the probability that all TDMA channels are occu-
pied.

• We use the mean waiting time (1
µt6

) as parameter from (almost) 0 to 15 seconds. A
waiting time of 0 seconds would be equivalent to the system without DeTVoC. The call
blocking probability then equals the call loss probability.

• The immediate transition t5 has higher priority than the timed transition t6.

MOSEL-2 Model

Besides the model architecture, we change the set of parameters and the result measures to
check the influence of DeTVoC on the system behaviour. Note, that immediate transitions
always have higher priority than timed transitions. Therefore, we do not have to specify
priorities for t5 and t6 explicitly.

43

1 /** CONSTANT AND PARAMETER PART ***/

2 // GSM user behaviour

3 PARAMETER v_ar := 0.005 .. 0.015 STEP 0.002; /* mean voice call arrival rate */

4 CONST v_ht := 100; /* mean voice call holding time */

5 CONST v_sr := 1/v_ht; /* mean voice call service rate */

6 PARAMETER v_dt := 1E-8, 7, 15; /* mean voice call waiting time */

7 CONST v_dr := 1/v_dt; /* mean voice call aborting rate */

8

9 // GPRS data behaviour

10 CONST d_ar := 0.7; /* mean data burst arrival rate */

11 CONST d_sz := 10 * 8; /* mean data burst size (kbit) */

12

13 // network configuration

14 CONST freq_c := 1; /* carrier frequencies in cell */

15 CONST chans_f := 8; /* physical channels per freq. */

16 CONST chans := freq_c*chans_f; /* overall numb. of channels */

17 CONST chans_sig := 2; /* channels used for signalling */

18 CONST chans_use := chans-chans_sig; /* channels available for users */

19 CONST chans_gpr := 1; /* channels reserved for GPRS */

20 CONST chans_gsm := chans_use - chans_gpr; /* max. numb. of voice channels */

21 CONST gprs_max := 32 * freq_c; /* maximum number of GPRS users */

22 CONST pdch_dr := 21.4; /* data rate per PDCH (kbit/s) */

23 CONST burst_sr := pdch_dr/d_sz; /* burst service rate per PDCH */

24

25 /** NODE PART ***/

26 NODE p1[chans_gsm] := 0; /* p1 */

27 NODE p2[gprs_max] := 0; /* p2 */

28 NODE p3[100] := 0; /* p3 */

29

30 /** RULE PART ***/

31 FROM EXTERN TO p3 RATE v_ar; /* t1 */

32 FROM p1 TO EXTERN RATE v_sr * p1; /* t2 */

33 FROM EXTERN TO p2 RATE d_ar; /* t3 */

34 FROM p2 TO EXTERN RATE burst_sr * (chans_use - p1); /* t4 */

35 FROM p3 TO p1; /* t5 */

36 FROM p3 TO EXTERN RATE v_dr * p3; /* t6 */

37

38 /** RESULT PART ***/

39 PRINT v_loss := 1 - ((v_sr * MEAN(p1)) / v_ar); /* voice call loss prob. */

40 PRINT v_block := PROB(p1==chans_gsm); /* voice call blocking probability */

41 PRINT d_loss := PROB(p2==gprs_max); /* data burst loss probability */

42 PRINT p3_full := PROB(p3==100); /* probability of full place p3 */

43

44 /** PICTURE PART **/

45 PICTURE "call blocking, call loss and burst loss probability"

46 PARAMETER v_ar

47 CURVE v_block

48 CURVE d_loss

49 CURVE v_loss

50 XLABEL "voice call arrival rate"

51 YLABEL "call blocking, call loss and burst loss probability"

44

voice call arrival rate

call blocking, call loss and burst loss probability

0.005 0.007 0.009 0.011 0.013 0.015 0.017

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

v_block = v_loss

(v_dt = 1e-08)

d_loss (v_dt = 1e-08)

v_block (v_dt = 7)

d_loss (v_dt = 7)

v_loss (v_dt = 7)

v_block (v_dt = 15)

d_loss (v_dt = 15)

v_loss (v_dt = 15)

Figure 2.6: GPRS/DeTVoC: blocking of voice calls and loss of calls and data bursts.

Results

The results were obtained within 9.030s/0.650s/9.690s (user/system/real). They were pro-
duced using MOSEL2 with SPNP’s steady-state analysis and are shown in Figure 2.6.

As predicted, the voice call loss probability approaches the voice call blocking probability for
very short user waiting times. The reduction of the voice call loss probability with increasing
user waiting time can be seen clearly. The voice call blocking probability increases with longer
waiting times because of a higher utilisation of the GSM channels. A higher utilisation of
GSM also leads to a higher data burst loss probability.

The textual output file provides further information about the applicability of the assumption
made before: The probability of place p3 reaching its capacity in this configuration is very
low (< 10−30) and can definitely be assumed to be zero.

45

2.1.4 Improving CAC Algorithm: DOVE

We could see in Figure 2.6, that despite DeTVoC the probability of unserved voice connection
requests is still higher than the probability of lost data bursts. We assume, that voice call loss
is much more undesirable than data loss, because data loss may be automatically repaired
by ARQ methods. Nevertheless, the goal is of course to balance the probability of lost voice
calls and lost data bursts.

A possible workaround would be to cancel the reservation of the one TDMA channel for the
GPRS system, which results in a complete sharing scheme.

MOSEL-2 Model with Complete Sharing Scheme

This is done in a slightly modified MOSEL-2 model. Note, that data burst loss can now have
two disjunctive causes:

1. The available PDCHs are serving the maximum of 32 GPRS users already.

2. There is no TDMA channel available for setting up a PDCH.

[...]

19 CONST chans_gpr := 0; /* channels reserved for GPRS */

[...]

41 PRINT d_loss := PROB(p2==gprs_max) + PROB(p1==chans_use); /* data burst loss */

[...]

Results of Model with Complete Sharing Scheme

The results were obtained using MOSEL-2 and SPNP’s steady-state analysis within
10.460s/0.700s/11.090s (user/system/real). They are presented in Figure 2.7.

We can see, that now the situation is just the other way round. Unfortunately, the partitioning
schemes do not provide finer granularity than single TDMA channels. Therefore, we have to
find another way to get a compromise between the last two approaches.

Conceptual Model with DOVE

One method to solve this problem is the introduction of DOVE (→ Chap. 1.6.3, p. 31). Re-
member, that the main principle of this method is to delay the voice connection, that will
displace the last PDCH in a complete sharing scheme. This will have two effects:

1. Data bursts can still be served, as long the voice user is delayed. Therefore, the data
burst loss probability will not rise that fast.

2. The last PDCH may not be displaced, because another TDMA channel might be avail-
able for the voice user in the meantime.

46

voice call arrival rate

call blocking, call loss and burst loss probability

0.005 0.007 0.009 0.011 0.013 0.015 0.017 0.019

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

v_block=v_loss (v_dt=1e-08)

d_loss (v_dt=1e-08)

v_block (v_dt=7)

d_loss (v_dt=7)

v_loss (v_dt=7)

v_block (v_dt=15)

d_loss (v_dt=15)

v_loss (v_dt=15)

Figure 2.7: Results of GPRS/DeTVoC system with complete sharing scheme.

DOVE allows us to fine-tune the balance between data burst and voice call loss by changing
the delay a voice user has to wait before preempting the last PDCH. The longer we choose
this delay, the more the system behaves like a system with partial sharing scheme and a
reserved channel for GPRS. The shorter we choose the delay, the more the system behaves
like a system with complete sharing scheme.

The conceptual model is shown in Figure 2.8 and comprises the following changes:

• The inhibitor arc of the immediate transition t5 now again disables the transition when
only one PDCH is left (similar to partial sharing scheme).

• The timed transition t7 instead allows preempting the last PDCH by an arriving voice
connection request after an exponentially distributed waiting time. This transition will
be modelled as infinite server, because every call will have to be delayed by the same
time, regardless of the number of already waiting calls.

• For the model evaluation we will take the mean DOVE-delay as parameter between
(almost) 0 and 25 seconds.

47

voice in data in

voice fin data fin

t1

t3 p2

p1

TDMA channels

t4

t2t5

p3

t6

t7

Figure 2.8: Conceptual GSPN model of GSM/GPRS system with DOVE.

MOSEL-2 Model with DOVE

For concise results, we will now keep the mean waiting time of waiting users (DeTVoC)
constant at 7 seconds. Instead, we will take the DOVE delay as parameter. Furthermore, we
will only take the data burst loss and the voice call loss probability into account. Including
the introduction of DOVE, the MOSEL-2 model now looks like:

48

1 /** CONSTANT AND PARAMETER PART ***/

2 // GSM user behaviour

3 PARAMETER v_ar := 0.005 .. 0.015 STEP 0.002; /* mean voice call arrival rate */

4 CONST v_ht := 100; /* mean voice call holding time */

5 CONST v_sr := 1/v_ht; /* mean voice call service rate */

6 CONST v_dt := 7; /* mean voice call waiting time */

7 CONST v_dr := 1/v_dt; /* mean voice call aborting rate */

8

9 // GPRS data behaviour

10 CONST d_ar := 0.7; /* mean data burst arrival rate */

11 CONST d_sz := 10 * 8; /* mean data burst size (kbit) */

12

13 // network configuration

14 CONST freq_c := 1; /* carrier frequencies in cell */

15 CONST chans_f := 8; /* physical channels per freq. */

16 CONST chans := freq_c*chans_f; /* overall numb. of channels */

17 CONST chans_sig := 2; /* channels used for signalling */

18 CONST chans_use := chans-chans_sig; /* channels available for users */

19 CONST chans_gpr := 0; /* channels reserved for GPRS */

20 CONST chans_gsm := chans_use - chans_gpr; /* max. numb. of voice channels */

21 CONST gprs_max := 32 * freq_c; /* maximum number of GPRS users */

22 CONST pdch_dr := 21.4; /* data rate per PDCH (kbit/s) */

23 CONST burst_sr := pdch_dr/d_sz; /* burst service rate per PDCH */

24 PARAMETER dove_dt := 1E-8, 7, 25; /* delay time for DOVE */

25 CONST dove_sr := 1/dove_dt; /* DOVE service rate */

26 CONST dove_res := 1; /* number of PDCHs saved from immediate preemption */

27 CONST dove_vch := chans_use - dove_res; /* always available for voice */

28

29 /** NODE PART ***/

30 NODE p1[chans_gsm] := 0; /* p1 */

31 NODE p2[gprs_max] := 0; /* p2 */

32 NODE p3[100] := 0; /* p3 */

33

34 /** RULE PART ***/

35 FROM EXTERN TO p3 RATE v_ar; /* t1 */

36 FROM p1 TO EXTERN RATE v_sr * p1; /* t2 */

37 FROM EXTERN TO p2 RATE d_ar; /* t3 */

38 FROM p2 TO EXTERN RATE burst_sr * (chans_use - p1); /* t4 */

39 IF (p1 < dove_vch) FROM p3 TO p1; /* t5 */

40 FROM p3 TO EXTERN RATE v_dr * p3; /* t6 */

41 FROM p3 TO p1 RATE dove_sr * p3; /* t7 */

42

43 /** RESULT PART ***/

44 PRINT v_loss := 1 - ((v_sr * MEAN(p1)) / v_ar); /* voice call loss prob. */

45 PRINT d_loss := PROB(p2==gprs_max) + PROB(p1==chans_use); /* data burst loss */

46

47 /** PICTURE PART **/

48 PICTURE "call and burst loss probability"

49 PARAMETER v_ar

50 CURVE d_loss

51 CURVE v_loss

52 XLABEL "voice call arrival rate"

53 YLABEL "call and burst loss probability"

49

voice call arrival rate

call and burst loss probability

0.005 0.007 0.009 0.011 0.013 0.015 0.017 0.019

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

d_loss (dove_dt = 1e-08)

v_loss (dove_dt = 1e-08)

d_loss (dove_dt = 7)

v_loss (dove_dt = 7)

d_loss (dove_dt = 25)

v_loss (dove_dt = 25)

Figure 2.9: GPRS/DeTVoC with DOVE: voice call and data loss probability.

Results of Model with DOVE

Again, we are using MOSEL-2 and steady-state analysis provided by SPNP. The results were
obtained within 22.400s/0.780s/23.180s (user/system/real) and are shown in Figure 2.9.

We can see, that for short DOVE delay times the results approach the behaviour of a complete
sharing scheme (→ Fig. 2.7, p. 47). On the other hand, the results approach the behaviour
of a partial sharing scheme (→ Fig. 2.6, p. 45) for long delay times.

Medium delays can be regarded as good compromise between both sharing schemes. Fur-
thermore, the delays can be specified quite dynamically and flexibly.

50

2.2 Non-Markovian Approach

Until now, we imposed a strong constraint on the model. We assumed, that all transitions
have either exponentially distributed random firing time or fire immediately after enabling.
The resulting GSPNs fulfil the Markov property and allow simple, convenient and fast eval-
uation. Nevertheless, the exponential distribution is not well-suited for modelling some be-
haviour of the real system.

2.2.1 Reconsidering Exponential Distributions

Sticking to the GSM/GPRS/DOVE model with DeTVoC (→ Fig. 2.8, p. 48), we will now
discuss the applicability of the exponential distribution for modelling the different timed
transitions.

t1 and t2: call arrival and service process

According to [43], classical telephone traffic is appropriately described by (negative-) ex-
ponentially distributed holding times and call inter-arrival times. Therefore, we consider
Poisson processes as adequate instrument to approximate these processes. (The dwell time,
i.e. the time a user stays in one cell before handover, instead can be modelled more appropri-
ately using lognormal distribution [46]. This has to be taken into account when considering
handovers.)

t3 and t4: data arrival and service process

Comparable to the Internet, the types for the most common data transmitted over GPRS are
WWW and FTP [35]. This will result into so called heavy-tailed distributions for file sizes
and therefore heavy-tailed burst lengths. This behaviour is not appropriately described by
the exponential distribution transition t4. Instead, Weibull, Pareto, lognormal, phase-type
or general exponential distributions are suggested by several publications [43, 47, 48, 49, 50]
to model the higher variability of inter-arrival and service times for self-similar data traffic.

In practice, all too often only the first two moments, i.e. the mean and the standard devi-
ation (or variance or square coefficient of variation), are available as empirically obtained
information about the random variables’ distribution [45, 48]. Therefore, it would be prac-
tical to use only these two parameters without making any other questionable assumptions
[48]. A possible distribution to work with would then be a widely general distribution, char-
acterised only by its mean and variance, that we will call empirical distribution (EMP) later
(→ Chap. 3.2, p. 64).

51

t6: DeTVoC

The time a user will wait for the establishment of his connection before giving up will be
distributed upon a limited range. There will be no user waiting forever and only a low number
of users waiting less than a second. Therefore, the user waiting time will be approximated
better by a normal or uniform distribution.

t7: DOVE

DOVE uses a timeout that might be state dependent for adaptive CAC but deterministic.
Therefore, a deterministic firing time for transition t7 will be much more realistic than an
exponentially distributed random firing time.

2.2.2 Limitations of MOSEL-2

The use of the non-Markovian distributions explained above within a MOSEL-2 model causes
the following problems:

• MOSEL-2 using MOSES only allows the usage of models equivalent to GSPNs. There-
fore, only exponential distributions are allowed. [2]

• MOSEL-2 using TimeNET only allows extended DSPNs (eDSPNs), i.e. only expo-
nential, deterministic and uniform distributions can be used. Furthermore, models
with more than one deterministically distributed transition enabled simultaneously
can only be simulated or approximatively analysed. Models with more than one
uniformly distributed transition enabled simultaneously can only be simulated. [2]
(→ Chap. 1.5.2, p. 22)

• Concerning the distributions mentioned above, MOSEL-2 2.1 would be able to handle
deterministic, lognormal, normal, Pareto and several phase-type distributions using
SPNP 6.1.2a simulation [12]. Unfortunately, SPNP 6.1.2a was a non-official version of
SPNP and is no longer available.

Based on this restrictions, we are currently only able to improve the behaviour modelling of
DeTVoC (t6) and DOVE (t7) by introducing uniform and deterministic distributions.

52

voice in data in

voice fin data fin

t1

t3 p2

p1

TDMA channels

t4

t2t5

p3

t6

t7

...

...

Figure 2.10: Conceptual eDSPN model of GSM/GPRS system with DOVE.

2.2.3 Conceptual non-Markovian Model of GSM/GPRS/DOVE System
with DeTVoC

The improvements lead to the conceptual eDSPN model shown in Figure 2.10:

• We cannot specify the state dependent firing times for the infinite server transitions t6
and t7, that now have non-exponentially distributed firing times, as easily as we did
for exponential distributions. Therefore, we have to specify a single transition for every
token in place p3. These transitions then will be provided with state dependent enabling
functions, that ensure, that for every token located in place p3 one t6 transition and
one t7 transition gets enabled.

• For t6 we specify a set of transitions with a deterministic firing time of seven seconds.

• For t7 we specify a set of transitions with uniformly distributed firing times from five
to 10 seconds.

53

2.2.4 MOSEL-2 Model of non-Markovian GSM/GPRS/DOVE System
with DeTVoC

1 /** CONSTANT AND PARAMETER PART ***/

2 // GSM user behaviour

3 PARAMETER v_ar := 0.005 .. 0.015 STEP 0.002; /* mean voice call arrival rate */

4 CONST v_ht := 100; /* mean voice call holding time */

5 CONST v_sr := 1/v_ht; /* mean voice call service rate */

6 CONST v_dt_min := 5; /* minimum voice call waiting time */

7 CONST v_dt_max := 10; /* maximum voice call waiting time */

8

9 // GPRS data behaviour

10 CONST d_ar := 0.7; /* mean data burst arrival rate */

11 CONST d_sz := 10 * 8; /* mean data burst size (kbit) */

12

13 // network configuration

14 CONST freq_c := 1; /* carrier frequencies in cell */

15 CONST chans_f := 8; /* physical channels per freq. */

16 CONST chans := freq_c*chans_f; /* overall numb. of channels */

17 CONST chans_sig := 2; /* channels used for signalling */

18 CONST chans_use := chans-chans_sig; /* channels available for users */

19 CONST chans_gpr := 0; /* channels reserved for GPRS */

20 CONST chans_gsm := chans_use - chans_gpr; /* max. numb. of voice channels */

21 CONST gprs_max := 32 * freq_c; /* maximum number of GPRS users */

22 CONST pdch_dr := 21.4; /* data rate per PDCH (kbit/s) */

23 CONST burst_sr := pdch_dr/d_sz; /* burst service rate per PDCH */

24 CONST dove_dt := 7; /* delay time for DOVE */

25 CONST dove_res := 1; /* number of PDCHs saved from immediate pre-emption */

26 CONST dove_vch := chans_use - dove_res; /* always available for voice */

27

28 /** NODE PART ***/

29 NODE p1[chans_gsm] := 0; /* p1 */

30 NODE p2[gprs_max] := 0; /* p2 */

31 NODE p3[20] := 0; /* p3 */

32

33 /** RULE PART ***/

34 FROM EXTERN TO p3 RATE v_ar; /* t1 */

35 FROM p1 TO EXTERN RATE v_sr * p1; /* t2 */

36 FROM EXTERN TO p2 RATE d_ar; /* t3 */

37 FROM p2 TO EXTERN RATE burst_sr * (chans_use - p1); /* t4 */

38 IF (p1 < dove_vch) FROM p3 TO p1; /* t5 */

39

40 @<1..20>{ /* t6 */

41 IF p3 >= # FROM p3 TO EXTERN AFTER v_dt_min .. v_dt_max; /* t6 */

42 } /* t6 */

43

44 @<1..20>{ /* t7 */

45 IF p3 >= # FROM p3 TO p1 AFTER dove_dt; /* t7 */

46 } /* t7 */

47

48 /** RESULT PART ***/

49 PRINT v_loss := 1 - ((v_sr * MEAN(p1)) / v_ar); /* voice call loss prob. */

50 PRINT d_loss := PROB(p2==gprs_max) + PROB(p1==chans_use); /* data burst loss */

51 PRINT p3_full := PROB(p3==20);

51

52 /** PICTURE PART **/

53 PICTURE "call and burst loss probability"

54 PARAMETER v_ar

55 CURVE d_loss

56 CURVE v_loss

57 XLABEL "voice call arrival rate"

58 YLABEL "call and burst loss probability"

54

We changed the following elements:

• Lines 6-7: The voice call user’s mean waiting time is replaced by a time range from
v dt min := 5 to v dt max := 10 seconds. These values are used for the uniform
distribution of transition t6.

• Line 24: The delay time for DOVE is now constant at 7 seconds. This value is used as
parameter for the deterministic distribution of transition t7.

• Line 31: To avoid very rare events, keeping the model smaller and shorten simulation
time, we decrease the capacity of place t3. The applicability of the smaller capacity
will be proven with the results provided by line 51.

• Lines 40-42: The former single rule of transition t6 is now replaced by a whole set of
rules to handle the infinite server property of t6. A loop construct generates as many
rules as place p3 can hold. Each generated rule gets its own enabling function. The
loop construct gets expanded by the MOSEL-2 syntax pre-processor. The expanded
loop would be:

IF p3 >= 1 FROM p3 TO EXTERN AFTER v_dt_min .. v_dt_max;

IF p3 >= 2 FROM p3 TO EXTERN AFTER v_dt_min .. v_dt_max;

IF p3 >= 3 FROM p3 TO EXTERN AFTER v_dt_min .. v_dt_max;

. . .

IF p3 >= 20 FROM p3 TO EXTERN AFTER v_dt_min .. v_dt_max;

More information about MOSEL-2 loops can be found in [2]. AFTER v dt min ..

v dt max describes a firing time with uniform distributed firing time from v dt min

to v dt max.

• Lines 44-46: Similar to transition t6 we use a loop construct to generate all rules
necessary to describe the infinite server behaviour of transition t7.

• Line 51: The results of this measure will prove, that a capacity of 20 for place p3 still
will be sufficient.

2.2.5 Results

We evaluate this modes using MOSEL-2 and TimeNET by starting MOSEL-2 with the fol-
lowing command line options described in [2]:

mosel2 -Tsvo simulation -o "-S -Ton 95 50 10 1 0 50 0 600" thesis_2_2_4.mos

This starts TimeNET’s discrete event simulation method and restricts the overall time used
for the simulation of a single tool-specific input file to 10 minutes. Because of five different
parameter settings , i.e. five possible combinations of parameters, five input files are gener-
ated by MOSEL-2 and simulated by TimeNET. The overall process took 116m/121s/60m
(user/system/real).

55

Although TimeNET should be able to solve the above model by simulation, we are not able
to obtain any reasonable results:

Stationary analysis of "thesis_2_2_4.mos" by TimeNET

Parameters:

v_ar = 0.005

Results:

v_loss = nan

d_loss = nan

p3_full = nan

===

Parameters:

v_ar = 0.007

Results:

v_loss = nan

d_loss = nan

p3_full = nan

===

Parameters:

v_ar = 0.009

Results:

v_loss = nan

d_loss = nan

p3_full = nan

[...]

The following error messages are generated by TimeNET:

SIMULATING THE DSPN ...

[...]

NOTE: A statistic seems to have no variance,

100 successive equal samples (value: nan) recorded.

Check the result definitions for deterministic behaviour.

Unfortunately, the reasons for this errors could not be determined within the bounds of this
thesis.

56

Chapter 3

Improving MOSEL-2

Two deficiencies were discovered above:

1. Only a few non-Markovian distributions, i.e. deterministic and uniform, are available
for evaluation with MOSEL-2 1.2 at the moment.

2. The evaluation of non-Markovian models using simulation is a very time-consuming
task.

3. The TimeNET simulation seems to be unreliable for some models.

To come around these problems, this chapter will be used to improve MOSEL-2 ...

1. ... by enabling the handling of SPNP 6.1 simulation that allows the usage of a lot of
other distributions.

2. ... by introducing a pre-processor for automatic approximation of general distribu-
tions by Markovian constructs. This will allow us to evaluate non-Markovian models
approximately by faster numerical analysis.

The changes lead to the current MOSEL-2 version 2.10. All references to lines of code are
(more or less) based on this MOSEL-2 version.

3.1 Using SPNP 6.1 Simulation

MOSEL-2 2.1 was recently enhanced to use the discrete event simulation provided by SPNP
6.1.2a [12]. Unfortunately, SPNP 6.1.2a is no longer available. To enable MOSEL-2 to work
with the simulation method provided by the official and still available SPNP version 6.1,
several changes had to be done. While introducing these changes, special care was taken, to
leave the handling of other methods than SPNP and the handling of the numerical analysis
of SPNP untouched.

57

3.1.1 Problem Description

The main problem was caused by the fact, that SPNP 6.1 – in contrast to SPNP 6.1.2a –
does not support the CSPL-function expected() (or cum expected()) in simulation mode.

expected() is used to calculate the mean of the return values from a marking dependent
reward function that is passed as parameter. The return value of expected() then can be
used within CSPL to calculate more complicated result measures, that even may contain
return values of further expected() calls. The final values can then be printed to the output
stream using the CSPL-function pr value().

Instead of expected(), SPNP 6.1 does only support the CSPL-function pr expected() (or
pr cum expected()). Unfortunately, this function does not provide a return value that could
be used for further calculations, but only prints the calculated mean to the output stream.

Furthermore, the format of the output of pr expected() and pr cum expected() differs
from the pr value() output.

When using SPNP 6.1 simulation, the output file can have two parts:

1. The first part is produced using numerical analysis. For this, it seems, that each non-
Markovian distribution is substituted by an exponential distribution. It appears as
if the first parameter of the original non-Markovian distribution simply is taken as
parameter (firing rate) for the exponential distribution, which does not make any sense
in most cases. This part may even show results, if pr value() or other CSPL result
output functions are used, that are only allowed for numerical analysis (i.e. pr mtta()).
The results, of course, are useless as long as the model is non-Markovian.

2. The second part only appears, if the SPNP-option IOP SIM STD REPORT is not set to
VAL NO. This part only includes results that were specified using pr expected() or
pr cum expected(). In contrast to SPNP 6.1.2a, the output does not provide the
mean values in addition to the confidence interval.

3.1.2 Changes to the CSPL-Generator

Enabling Simulation Output

In MOSEL-2 2.1 the SPNP-option IOP SIM STD REPORT was set to VAL NO by default because
the additional output was not necessary and made the result parsing more complicated. To
obtain simulation results, this option now has to be set to VAL YES instead. (cspl.c:747)

Using pr expected()

In simulation mode, pr expected() or pr cum expected() have to be used instead of
expected(), cum expected() and pr value(). For this, all terms that formerly contained
expected()-calls, now have to be specified in their own reward function.

58

In other words:

• The following line (specified in MOSEL-2):

PRINT lambda1 := UTIL(p1) * mue1;

• was translated to CSPL for SPNP 6.1.2a like this (simplified):

double reward_func_0_ (void)

{

return (mark ("p1") > 0 ? 1.0 : 0.0);

}

void ac_final (void)

{

solve (INFINITY);

{

double reward_0_ = expected (reward_func_0_);

double lambda1_ = reward_0_ * mue1_;

pr_value ("lambda1", lambda1_);

}

}

• Now, using SPNP 6.1, it has to be translated like this (simplified)1:

double reward_func_0_ (void)

{

return (mark ("p1") > 0 ? 1.0 : 0.0);

}

double sim_lambda1_(void)

{

double ret_val = (reward_func_0_() * mue1_);

return ret_val;

}

void ac_final (void)

{

pr_expected ("R_1", sim_lambda1_);

}

This was achieved by changing or inserting the following lines of code in file cspl.c: 118-125,
157-165, 1365-1369, 1414-1416, 1436-1459, 1474-1478, 1507-1516, 1524-1527, 1530-1548

Unfortunately, this workaround only provides proper results for a certain class of simple
result terms. The result term f() using the marking dependent reward functions a, b, ...
must accomplish the following property:

f(AV G(a), AV G(b), ...) = AV G(f(a, b, ...))

AV G(z) denotes a function, that calculates the mean value of the marking dependent reward
function z over all states (like (pr)(cum)expected()).

1Why the solve() call had to be removed (→ Chap. 3.1.4, p. 61) and the result name had to be changed
(→ Chap. 3.1.2, p. 60) is described below.

59

Of course, this assumption is wrong in general. But the property does hold for several simple
performance measures, e.g.:

• f() is constant.

• f() is a sum.

• f() is a product and all reward functions a, b, ..., are constants except one.

This is better than nothing, but a better solution of this problem would be to evaluate only
the basic reward functions (UTIL, MEAN, PROB) with the help of the tools and calculate
the desired result terms within the MOSEL-2 result parser. This would also make it easier to
include more tools. But, this requires a major rewrite of both the translators and the result
parser, which could not be done in this thesis due to lack of time.

Result Symbol Encoding

The simulation output of SPNP 6.1 truncates result-names after 22 characters. If long node
or result names are used in MOSEL-2 this could happen easily, especially if job-distribution
measures are desired. In this case, the result measures may not be identified by the MOSEL-2
result parser correctly anymore. To solve this problems, in simulation mode every result
measure now gets a unique ID. To keep this ID as short as possible but still readable and
easy to parse, it is base62 encoded using the characters: ’0’-’9’, ’a’-’z’ and ’A’-’Z’.

The base62 encoder is located in file basic.c (lines 258-278 and 303-317). A base62 decoder
is also provided in file basic.c (lines 280-300 and 319-333) but currently unused. According
entries are located in file basic.h (lines 101-120).

The encoder is used on the fly by the CSPL-generator cspl.c from line 1539 to line 1546 for
normal result measures (prefixed with ”R ”). For job distributions measures (preceded by
”D ” and suffixed by ” ” and the number of jobs) the base62 encoded node-id is used by the
CSPL-generator (lines 1368-1372). The node-id is generated only once when saving the node
to the MOSEL-2 internal model description. This is done in model.c (lines 422-436). The
node structure is adapted to carry the ID in model.h (line 104).

To calculate the memory used by the base62 encoded IDs properly, the function ceil() is
used (cspl.c:1539, model.c:425). This made it necessary to introduce the header file math.h

to file cspl.c (line 20).

3.1.3 Changes to the Result-Parser

To make result parsing more flexible – not at least in the face of coming versions of SPNP –
I decided to introduce support for Perl compatible regular expressions (pcre). For this, the
corresponding library has to be linked to the MOSEL-2 code as specified in file Makefile.in
(line 34) and the header file pcre.h has to be included in the result parser result.c (line 24).

To make the actual parsing more convenient, a helper function parse sim output() is pro-
vided in result.c (lines 1188-1222). Providing a search pattern and a line that should be
parsed, this helper function can return up to three substring matches. The helper function

60

is used by the simulation result parser (result.c: 1315-1419). To build the search pattern,
result.c uses the base62 encoder again.

SPNP 6.1 simulation does not provide mean values for the results. Therefore, the average
of the lower and upper bound of the confidence interval is calculated by the result parser
(result.c: 1364-1365). To get more information about the accuracy of the simulation results,
the result parser could be extended to show the confidence interval also in the MOSEL output.

3.1.4 Additional Changes

• The invocation of the numerical analysis before starting the simulation is done by the
CSPL function solve(), that was generated by cspl.c. As the numerical analysis is very
time- and memory-consuming and provides bogus results in most cases, the solve()

call is now omitted. Unfortunately, we are not able to use (several) solve()-functions
in one simulation run. Therefore, I had to disable transient analysis with multiple steps
(”transient loop”) when using SPNP simulation. Single-step transient analysis is still
possible. As upper time limit, the variable SIM LENGTH is set. If neither an upper
time limit nor SIM LENGTH is specified by the user manually (steady-state evaluation),
MOSEL-2 now sets SIM LENGTH to 106. Unfortunately, SPNP requires that SIM LENGTH

is specified by the user. Therefore, no real steady-state evaluation seems to be possible.
(cmdline.c: 197-200; model.c: 1012-1016; main.c: 261-265; cspl.c: 682-745, 1567, 1586)

• There is no equivalent for the CSPL-function pr mtta() in simulation mode. Therefore,
duration methods will be ignored when using SPNP simulation. An adequate warning
is generated (main.c: 266-269; result.c: 1414-1416).

• The order of the parameters of the hypoexponential distribution changed between SPNP
versions 6.1.2a and 6.1. Now, the order is as described in [10]. The parameter check of
MOSEL-2 had to be adapted in parser.y (lines 703-725).

• In SPNP 6.1 some distributions are available, that did not work with 6.1.2a: uniform,
Weibull and negative binomial. These distributions are now available for MOSEL-2.
The Weibull and negative binomial distributions where introduced similar to all other
SPNP simulation distributions as described in [12] (scanner.l: 131-132; parser.y: 726-
765, 1364, 1586-1589; model.h: 48-49, 145-146; model.c: 974-979, 1004-1007, 1214-1229;
main.c: 137-140, 243-257, 324-327; cspl.c: 588-635, 956-993). For using the uniform dis-
tribution, that is already available for use with TimeNET, a distinction between uniform
and discrete uniform distribution had to be implemented additionally (model.h: 29;
model.c: 974-979; main.c: 141-142, 174-175, 340-343; timenet.c: 926), because only the
former one is supported by SPNP simulation. The negative binomial distribution does
only work, if we consider a typo (”negboval” instead of ”negbval”) in the SPNP 6.1
header file user.h (line 50). If this typo will be fixed in future SPNP versions, ”negboval”
has to be changed into ”negbval” in file cspl.c (line 958).

61

Distribution MOSEL-2 syntax

beta BETA (a, b)
binomial BINOM (a, b, c)
Cauchy CAUCHY (a, b)

deterministic AFTER a
Erlang ERLANG (a, b)

exponential RATE a
gamma GAMMA (a, b)

geometrical GEOM (a, b)
hyperexponential HYPER (a, b, c)
hypoexponential HYPO1 (a, b, c, d)

lognormal LOGN (a, b)
negative binomial NEGB (a, b, c)

normal NORM (a, b)
Pareto PARETO (a, b)
Poisson POIS (a, b)
uniform AFTER a .. b
Weibull WEIB (a, b)

Table 3.1: Distributions available for MOSEL-2 2.10 that can be evaluated using SPNP 6.1
simulation.

• The function CEIL is available to MOSEL-2 now. CEIL is comparable to FLOOR, but
rounds the argument to the next greater integer. The appropriate changes were done in
scanner.l (line 134), parser.y (lines 1368, 1778-1781), expr.h (line 38), expr.c (lines 165,
647-653, 772, 831-832, 943, 1022) and cspl.c (lines 51, 85, 187). Similar to FLOOR,
SIN and SQRT [2], CEIL has some restrictions:

– Using MOSES, CEIL may not be used in state-dependent expressions.

– Using TimeNET, CEIL is only allowed in a state-dependent expression if its ar-
gument is constant.

3.1.5 Summary

• MOSEL-2 is now able to work with the discrete event simulation of SPNP 6.1

• The available distributions for SPNP 6.1 simulation are listed in Table 3.1. The pa-
rameters (a-d) of the different distributions are described in [12] and [10].

• The operator CEIL can be used in MOSEL-2 (with restrictions similar to FLOOR, SIN
or SQRT).

• Duration measures are not allowed if using SPNP 6.1 simulation.

• Transient analysis is allowed for SPNP 6.1 simulation but may not contain several steps
(transient loops).

1The order of parameters is as described in [10], not as described for SPNP 6.1.2a in [12]: a = number of
stages (2 or 3); b-d = rates for stages 1 to 3.

62

SPNP Simulation Option transient2 at time T ”steady-state”

IOP SIMULATION VAL YES VAL YES

FOP SIM ERROR 0.1 0.1
FOP SIM LENGTH T 106

FOP SIM STD REPORT VAL YES VAL YES

Table 3.2: SPNP 6.1 simulation defaults.

• If using SPNP 6.1 simulation, the result measures may only be sums of constants,
or elements that are linearly dependent from one marking dependent result function
(MEAN, UTIL, PROB), e.g.:

PRINT example_a := CEIL(SQRT(param_1 * const_1))^2; /* valid: constant */

PRINT example_b := MEAN(place1); /* valid: lin. dependent from MEAN */

PRINT example_c := example_a * example_b; /* valid: lin. dependent from MEAN */

PRINT example_d := UTIL(place1) + PROB(place2==10); /* valid: sum of reward functions */

PRINT example_e := example_a * example_d; /* valid: sum of lin. dependencies */

PRINT example_f := UTIL(place1) * PROB(place2==10); /* invalid: contains UTIL * PROB */

PRINT example_g := example_b * example_c; /* invalid: contains MEAN * MEAN */

• The default SPNP simulation options chosen by MOSEL-2 changed from MOSEL-2
version 2.1 to version 2.10. The defaults are shown in Table 3.2. A description of these
and other options is given in [12] and [10].

2When the user wants to start transient evaluation, he has to specify the evaluation time point T .

63

3.2 Introducing general Distributions – The Rule Pre-

Processor

As we have seen, only a few non-Markovian models, i.e. DSPNs, can be solved by numerical
analysis using MOSEL-2 2.1. Usually, non-Markovian models have to be evaluated using
discrete event simulation, which is a very time-consuming task. We will now enable approxi-
mative numerical analysis for a subclass of general distributions whose first two moments are
known: their mean and variance. We will call this subclass empirical distributions (EMP),
because the mean and the variance are values that can be obtained quite easily from mea-
surements. For example, consider Xi with i = 1 . . . k as measured values (samples). Then
the first two moments of the values’ distribution are [14]:

X =
1

k

k
∑

i=1

Xi (3.1)

X2 =
1

k

k
∑

i=1

X2
i (3.2)

The mean is equal to the first moment. The variance can be calculated as:

σ2 = (X − X)2 = X2 − X
2

(3.3)

3.2.1 Concept

The analyst should be able to use an empirical distribution directly in MOSEL-2 by applying

EMP (mean, var)

to the according rule, whereas mean or t̄ is the mean of the firing time and var or σ2 is the
variance of the firing time’s distribution. This rule then gets substituted by one or several
sub-rules depending on the square coefficient of variation (SCV) c2:

c2 =
σ2

t̄2
(3.4)

If c2 equals one, the empirical distribution is equivalent to an exponential distribution. If it
is greater than one, the distribution can be approximated by a general exponential distribu-
tion. If c2 is smaller than one, the distribution can be approximated by a hypoexponential
distribution.

Consider the following MOSEL-2 rule:

FROM p1 TO p2 EMP (mean, var);

This rule can be represented by the Petri net shown in Figure 3.1

The dotted arcs to the environment represent arbitrary input, output or inhibitor arcs (or,
more general, guard functions) to the adjacent parts of the model.

64

p1 p2

EMP (mean, var)

Figure 3.1: Example for transition with empirical distributed firing time.

p1 p2

RATE 1/mean

Figure 3.2: Transition with exponentially distributed firing rate.

Exponential Substitution (c2 = 1)

Now consider the parameters mean > 0 and var = SQRT(mean) for Figure 3.1 The SCV
resulting from these parameters is:

c2 =
σ2

t̄2
=

mean

mean
= 1 (3.5)

A c2 of one is equivalent to an exponential distribution. The empirical distribution in 3.1 can
then be substituted by the exponential distribution of Figure 3.2.

General Exponential Substitution (c2 > 1)

If c2 is greater than 1, we choose the general exponential (GE) distribution [48, 52, 53, 54, 55]
as substitution. The GE distribution can be modelled as shown in Figure 3.3. The advantage
of the GE distribution is, that the size of the equivalent model does not change with the
parameters – in contrast to, for example, the Cox distribution.

The transition probability p can be calculated as:

p =
2

c2 + 1
(3.6)

We can use weights instead of transition probabilities in MOSEL-2. This allows us to define
the weight of the exponential path as one. The weight of the immediate path can than be
calculated as 1

c2−1
.

65

p1 p2n1

RATE 1/mean
p

1-p

Figure 3.3: Equivalent model for GE distributed transition.

p1 p2n1 nr

RATE rate_1 RATE rate_2 RATE rate_r

Figure 3.4: Equivalent model for PH distributed transition.

Phase Type Substitution (c2 < 1)

If c2 is less than 1, then we use a subclass of phase type (PH) distributions, the hypoexpo-
nential distribution, as substitution [56]. The equivalent model is shown in Figure 3.4.

The number r of exponential distributed stages needed can be calculated using:

r = d 1

c2
e (3.7)

The calculation of the firing rates rate 1 (µ1) to rate n (µn) of the exponential stages 1 . . . r
can be done using the following recursive algorithm:

• Step 1: We calculate the SCV c2 using Equation 3.4.

• Step 2: We determine r using Equation 3.7.

66

• Step 3: If r = 2, then we finish using:

µa,b =
2

t̄
(

1

1 ±
√

2c2 − 1
) (3.8)

• Step 4a: r is even: We split the further investigation into two identical parts (a and
b) and restart the algorithm with Step 0 twice using the parameters ta, σ2

a and tb, σ2
b ,

whereas:

ta = tb =
t

2
(3.9)

and:

σ2
a = σ2

b =
σ2

2
(3.10)

• Step 4b: r is odd: We determine the rate of a single stage using:

µa =
1

ta
=

r

t̄
(3.11)

We then restart the algorithm with an even number of remaining stages using the
parameters:

tb = t̄ − ta = t̄(1 − 1

r
) (3.12)

and

σ2
b = σ2 − σ2

a = c2 · t̄2 − 1 · ta2
= c2 · t̄2 − (

t̄

r
)2 = t̄2(c2 − 1

r2
) (3.13)

3.2.2 Implementation

The substitutions for approximating the empirical distribution should be generated automat-
ically by a rule pre-processor within MOSEL-2. A first step will be to examine the MOSEL-2
architecture and to decide, where the pre-processor should be attached.

Architecture of MOSEL-2

The MOSEL-2 evaluation environment can be divided into six main parts:

1. Command line parser: The command-line parser checks and evaluates the options given
when starting MOSEL-2. It is implemented in file cspl.c.

2. Input file scanner/parser: The input file scanner (scanner.l) does the lexical analysis
of the input file, i.e. it splits the source file into tokens ignoring whitespace (blanks,
tabs, newlines) and comments. Furthermore, the syntactical scanner pre-processes and
expands the MOSEL-2 loops. The parser (parser.y) instead does the syntactical anal-
ysis. It finds the hierarchical structure of the scanned input file, checks the semantics
of the input (e.g. the parameters of distributions) and stores the MOSEL-2 model into
the internal model description.

67

3. MOSEL-2’s internal model description is implemented in model.c. It takes the model
information from the parser and stores it in several data structures. The internal model
description can be dumped using the command line option -d to check, if the model
was parsed as expected.

4. Model translators: There exist model translators for MOSES (moslang.c), SPNP
(cspl.c) and TimeNET (timenet.c). These translators take their information from the
internal model description and generate the tool-specific input file out of it.

5. Tool invocation and result parsing: result.c starts the appropriate tool with the specified
options and parses the output produced by the tool to provide the tool independent
MOSEL-2 result files.

6. Main routine: The main routine (main.c) coordinates all parts mentioned above.

Placing the Pre-Processor within the Architecture of MOSEL-2

The pre-processor – as its name implies – should operate before the MOSEL-2 internal model
description is build. This has several advantages:

• The current and future tool specific translators do not have to be changed or compli-
cated significantly.

• The output of the pre-processor can be checked using the model dump option.

Furthermore, the pre-processor . . .

• . . . will have to pre-process MOSEL-2 rules that contain a special distribution
(e.g. EMP). Therefore, the pre-processor will have to work after the input file scan-
ner and parser, where single rules are available as such.

• . . . should have as less impact on “classical” MOSEL-2 rules as possible.

• . . . should be implemented as modular as possible to avoid changes to the former code
and to allow easier debugging, improvement and expansion.

Putting all requirements together, we derive the conceptual architecture shown in Figure 3.5.

The parser passes all model information, that does not have to be pre-processed, directly
to the internal model description as before. Only rules, that have to be pre-processed, for
example because they have empirical distribution, are passed to the pre-processor instead.
In this case, the pre-processor substitutes the original rule by one or several new rules and
passes these to the internal model description.

The main functions of the rule pre-processor are located in rule pp.c.

68

scanner

parser

MOSEL-2 model

internal model

rule pre-processor

translator

Figure 3.5: Placing the rule pre-processor within the MOSEL-2 architecture.

Detailled Description of the Pre-Processor

Due to lack of time and space, only the main concepts of implementation can be shown here.
Not all functions are presented, e.g. the numerous functions for handling the data structures
and the memory.

At first, we have do introduce the new keyword “EMP” for the new empirical distribution
(scanner.l: 134; parser.y: 1367). If the parser recognises this keyword (parser.y: 1597), it calls
function set distrib (parser.y: 1599) and sets the variable pp state to PP USED (parser.y:
1600), which is set to PP UNUSED by default (parser.y: 1499).

The function set distrib (parser.y: 505-778) checks the distribution’s parameters (parser.y:
513-769) and saves the distribution and its parameters to the parser internal rule structure
(parser.y: 771-777) as it is done for all other distributions as well. This structure saves all
data until the whole rule is parsed. Then, the data collected in the structure is transferred
to the internal model description using the function generate rule (parser.y: 1508, 901-
1001). If the rule does not have to be pre-processed, the function generate rule passes the
rule information directly to the internal model description using the function define rule

(parser.y: 993-998) which is provided by model.c (lines 545-627). If instead the rule has to
be pre-processed, i.e. the variable pp state is set to PP USED, then the rule information is
passed to the pre-processor using the function pp rule (parser.y: 983-988), which is provided
by rule pp.c (lines 1854-1935). The return value of pp rule is the new number of temporary
nodes including the nodes, that might have been generated by the pre-processor.

When the rule pre-processor is called, it first checks, if any error occurred while parsing the
input file so far. If not, it copies the given rule information to a local data structure to work
on (rule pp.c: 1889-1895) and then decides which constructs the rule has to be substituted
with on the basis of the used distribution (rule pp.c: 1897-1915). Currently only empirical
distributions (EMP) are supported. A few hints on how to implement other pre-processor
distributions (e.g. Erlang) are given in Appendix A.

69

In case of EMP, function pp emp is invoked (rule pp.c: 1907). The function pp emp (rule pp.c:
1687-1850) calculates the SCV using the parameters mean and variance and then decides
based on the SCV, which constructs (exponential, GE or phase type substitution) will be
generated by the subroutines pp dist exp, pp dist ge or pp dist ph.

Due to the fact, that the SCV may take several values because of different parameter settings,
and that some settings may produce constructs with terms that cannot be calculated in other
settings (e.g. division by zero or negative square root) we have to introduce a new concept of
conditions for rules. We call this conditions “rule allowance conditions” or just “allowance”
to distinguish them from IF or enabling conditions that can be specified in MOSEL-2 or that
can be specified by MOSEL-2 in the tool specific input files to enforce model constraints like
capacities of nodes. In contrast to the latter conditions, the allowances are specified by the
pre-processor and are used by the translators to determine, if the rule is applicable in the
current setting of parameters or if it should be ignored. Nodes, that are only used in ignored
rules in the current parameter setting, are ignored as well.

We will now have a closer look at the three types of substitutions of the EMP distribution:

Exponential Substitution: The exponential substitution is the easiest case. It can be
substituted exactly as shown in Figure 3.2. No temporary nodes have to be generated. Only
the distribution type has to be changed and the rate has to be calculated. The allowance
of the generated rules does not change with the parameters as long the SCV is equal to
one. Therefore, we have to specify the rule allowance only once, what is done in function
pp emp (rule pp.c: 1764-1790). The generation of the final rule is then done in function
pp dist exp (rule pp.c: 863-902). The function pp dist exp manipulates the working rule
only by setting the distribution type to exponential (rule pp.c: 882), deleting the second
parameter, the variance, which is no longer needed (rule pp.c: 883-884), and sets the first
parameter, now the rate, to a newly generated MOSEL-2 expression that calculates 1

mean
.

Fortunately, this minor change does not affect other elements of the rule, e.g. arc multiplicities.
The manipulated rule is then saved to the internal model description by using the function
pp save rule (rule pp.c: 891), which is provided by rule pp.c as well (lines 164-197) and
uses function define rule which is provided by model.c.

GE Substitution: Even though the GE substitution – similar to the exponential – only
needs one allowance (SCV > 1) for all rules that is specified in function pp emp (rule pp.c:
1805-1821), this construct is much more complicated. According to Figure 3.3 we would have
to insert a new node (n1) between the source node p1 and the destination node p2. This
would make it necessary to take care of input and output arc multiplicities that may also
have effect on the temporary nodes capacity or – speaking in terms of MOSEL-2 – we would
have to consider node arities or node states for the temporary nodes.

Therefore, we will not substitute the EMP distribution by the construct presented in Figure
3.3 but by a relay circuit construct as shown in Figure 3.6. This will keep the original rule
except changing the distribution type and adding an input node. The relay circuit is then
added using new and simple rules and basic nodes with capacity one.

The triangles in Figure 3.6 depict sources and sinks for tokens and only serve clarity. The
dependence arcs were introduced before (→ Fig. 1.7, p. 13).

70

t1

p1 p2

n1

W=1

W= 2/(c -1)2

n2

RATE 1/mean

t1
t2

t3
t5

t6

t4

Figure 3.6: Construct of GE Substitution.

Example: A token enters place p1. This enables the upper part of the master transition
t1 and therefore transitions t2 and t3. Nevertheless, only one of both transitions can fire
according to their weight. If t3 fires, a single token is generated in place n1. The token
enables transition t4 which has exponentially distributed firing time with firing rate 1

mean
.

After the firing of t4, the token is transferred to place n2, which enables the main transition
t1. The transitions t5 and t6 are only generated by the pre-processor, if the policy preemptive
repeat different is chosen for the current rule. They clear the places n1 and n2 if the master
transition gets disabled. If the policy preemptive resume is chosen, the token remains in n1
or n2 if the master transition gets disabled. Therefore, the relay circuit resumes its process
when the master transition gets re-enabled. The policy preemptive repeat identical cannot be
handled by the pre-processor. It is replaced with preemptive repeat different.

The GE substitution is build by the function pp dist ge (rule pp.c: 906-1175).

PH Substitution: The phase type substitution comprises a relay circuit as well. The
construct is shown in Figure 3.7. Unfortunately, the number of stages r depends on the SCV,
i.e. we may have to generate the rule allowance dynamically for each settings (rule pp.c:
1488-1497, 1547-1577).

The construct is built by function pp dist ph (rule pp.c: 1374-1683). This function uses
– among others – the function pp compute ph rates (rule pp.c: 1179-1368), which is the
implementation of the algorithm that was introduced in Section 3.2.1 on page 66.

71

p1 p2

n1 nrn2

RATE
rate_1

RATE
rate_2

RATE
rate_n

Figure 3.7: Construct of PH Substitution.

t1 p1 t2

20

Figure 3.8: Conceptual Model for Testing the EMP distribution.

3.2.3 Example

Consider the ESPN shown in Figure 3.8. Let t1 be a transition with exponentially distributed
firing rate, p1 a place with capacity 20 and t2 a transition with empirical distribution.

The MOSEL-2 model: The following MOSEL-2 model can be derived:

PARAMETER mue_1 := 1 .. 10; /* service rate of t1 */

CONST t_2 := 5; /* mean firing time of t2 */

PARAMETER scv_2 := 0.1, 0.4, 1, 2, 10; /* scv of t2 */

CONST var_2 := scv_2 * (t_2 * t_2); /* variance of t2 */

NODE p1[20] := 0; /* p1 */

FROM EXTERN TO p1 RATE mue_1; /* t1 */

FROM p1 TO EXTERN EMP (t_2, var_2) PRD; /* t2 */

PRINT avg_p1 = MEAN(p1);

PICTURE "average number of tokens in p1"

PARAMETER mue_1

CURVE avg_p1

72

The internal model description: We generate an output of the MOSEL-2 internal model
description after parsing and pre-processing the model above using the MOSEL-2 option “-d”:

1 Parameters:

2 mue_1 := 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

3 scv_2 := 0.1, 0.4, 1, 2, 10

4

5 Symbols:

6 t_2 := 1 / 8 [constant]

7 var_2 := scv_2 * (t_2 * t_2) [constant]

8 avg_p1 := MEAN (p1) [result, print]

9

10 Enums:

11

12 Nodes:

13 p1[20] := 0

14 temp_0_[1]

15 temp_1_[1]

16 temp_2_[1]

17 temp_3_[1]

18 temp_4_[1]

19 temp_5_[1]

20 temp_6_[1]

21 temp_7_[1]

22 temp_8_[1]

23 temp_9_[1]

24 temp_10_[1]

25 temp_11_[1]

26 temp_12_[1]

27 temp_13_[1]

28

29 Assertions:

30

31 Rules:

32 Source rule 1:

33 0: TO p1 RATE mue_1

34 Source rule 2:

35 1: [FLOOR (var_2 / (t_2 * t_2) * 1e+10 + 0.5) / 1e+10 = 1]

36 FROM p1 RATE 1 / t_2

37 2: [var_2 / (t_2 * t_2) > 1]

38 FROM p1 FROM temp_1_ PRIO 0

39 3: [var_2 / (t_2 * t_2) > 1]

40 IF temp_0_ < 1, temp_1_ < 1, p1 > 0 TO temp_1_ PRIO 0 WEIGHT 1

41 4: [var_2 / (t_2 * t_2) > 1]

42 IF temp_0_ < 1, temp_1_ < 1, p1 > 0 TO temp_0_ PRIO 0 WEIGHT 2 / (var_2 / (t_2 * t_2) - 1)

43 5: [var_2 / (t_2 * t_2) > 1]

44 FROM temp_0_ TO temp_1_ RATE 1 / t_2 PRIO 0

45 6: [var_2 / (t_2 * t_2) > 1]

46 IF NOT p1 > 0 FROM temp_0_ PRIO 0

47 7: [var_2 / (t_2 * t_2) > 1]

48 IF NOT p1 > 0 FROM temp_1_ PRIO 0

49 8: [var_2 / (t_2 * t_2) < 1]

50 FROM p1 FROM temp_2_ PRIO 0

51 9: [CEIL (1 / (var_2 / (t_2 * t_2))) = 10 AND var_2 / (t_2 * t_2) < 1]

52 IF NOT p1 > 0 FROM temp_3_ PRIO 0

[...]

87 27: [CEIL (1 / (var_2 / (t_2 * t_2))) = 10 AND var_2 / (t_2 * t_2) < 1]

88 IF temp_3_ < 1, temp_4_ < 1, temp_5_ < 1, temp_6_ < 1, temp_7_ < 1, temp_8_ < 1, temp_9_ < 1, temp_10_ < 1, temp_11_ < 1

TO temp_11_ RATE 2 / (t_2 / 2 * 0.8 / 2 * (1 - SQRT (2 * (1.5625 * (var_2 / (t_2 * t_2) * 2 - 0.04) * 2) - 1)))

89 28: [CEIL (1 / (var_2 / (t_2 * t_2))) = 3 AND var_2 / (t_2 * t_2) < 1]

90 IF NOT p1 > 0 FROM temp_12_ PRIO 0

91 29: [CEIL (1 / (var_2 / (t_2 * t_2))) = 3 AND var_2 / (t_2 * t_2) < 1]

92 FROM temp_12_ TO temp_2_ RATE 3 / t_2

93 30: [CEIL (1 / (var_2 / (t_2 * t_2))) = 3 AND var_2 / (t_2 * t_2) < 1]

94 IF NOT p1 > 0 FROM temp_13_ PRIO 0

95 31: [CEIL (1 / (var_2 / (t_2 * t_2))) = 3 AND var_2 / (t_2 * t_2) < 1]

96 FROM temp_13_ TO temp_12_ RATE 2 / (t_2 * 0.666667 * (1 + SQRT (2 * (2.25 * (var_2 / (t_2 * t_2) - 0.111111)) - 1)))

97 32: [CEIL (1 / (var_2 / (t_2 * t_2))) = 3 AND var_2 / (t_2 * t_2) < 1]

98 IF temp_12_ < 1, temp_13_ < 1 TO temp_13_ RATE 2 / (t_2 * 0.666667 * (1 - SQRT (2 * (2.25 * (var_2 / (t_2 * t_2) -

0.111111)) - 1)))

99

100 Pictures:

101 Picture "average number of tokens in p1":

102 Parameter: mue_1

103 Curve: avg_p1

104 X Axis Label: "arrival rate"

105 Y Axis Label: "average number of tokens in p1"

106

107 Rewards:

108 MEAN (p1)

73

Description: In lines 14 to 27 we can see, that 14 nodes are generated by the pre-processor
for the relay circuits needed. The nodes temp 0 and temp 1 are used for the GE substi-
tution nodes n2 and n1 (→ Fig. 3.6, p. 71). The node temp 2 is equivalent to node nr
(→ Fig. 3.7, p. 72) and is used by both phase type substitutions that will be generated: one
with 10 stages (SCV = 0.1) and one with 3 stages (SCV = 0.4). The remaining 9 nodes for
SCV=0.1 are temp 3 (= n9) to temp 11 (= n1). The remaining 2 nodes for SCV=0.4 are
temp 12 (= n2) and temp 13 (= n1).

Source rule 1 (lines 32-33) is equivalent to the exponential transition t1 in Figure 3.8. It is
not touched by the pre-processor. It is allowed in every parameter setting and therefore does
not need an allowance condition.

Source rule 2, which substitutes the empirical distribution t2 (→ Fig. 3.8, p. 72), now consists
of 32 different sub-rules. In the model dump, each sub-rule is preceded by its allowance
condition (in square brackets “[]”). For example, sub-rule 1 (lines 35 and 36) describes an
exponential transition which is only used if the SCV is equal to one. For the use in the
allowance condition (e.g. line 35), the SCV (= σ2

t̄2
) is rounded to 10 digits after the decimal

point to exclude errors that arise because of the internal representation of floating point
values. The sub-rules 2 to 7 (lines 37-48) are only used to build the GE substitution of
Figure 3.6 if the SCV is greater than one. Sub-rule 8 (lines 49 and 50) is used for both PH
substitutions (10 and 3 stages) if the SCV is smaller than one. The 10-stage PH substitution
is built by the sub-rules 9 to 27 (lines 51-88) and the 3-stage PH substitution is built by the
sub-rules 28 to 32 (lines 89-98).

The tool-specific input file: MOSEL-2 generates a single tool-specific input file for each
setting of parameters. According to the allowance conditions, in each input file only elements
are used, that are needed for the current setting.

The results: The results of the above originally non-Markovian model were obtained within
9.270s/1.960s/11.180s (user/system/real) using MOSEL-2 with numerical analysis provided
by SPNP 6.1 and are presented in Figure 3.9.

In Figure 3.10 the results for a different set of parameters is shown. The values of the empirical
distribution’s SCV are now chosen closer to one. The numerical analysis with MOSEL-2 and
SPNP took 4.120s/1.080s/5.140s (user/system/real).

74

arrival rate

average number of tokens in p1

1 2 3 4 5 6 7 8 9 10 11

0

2

4

6

8

10

12

14

16

18 scv = 0.1

scv = 0.4

scv = 1

scv = 2

scv = 10

Figure 3.9: Results of example with EMP distribution.

arrival rate

average number of tokens in p1

1 2 3 4 5 6 7 8 9 10 11

0

2

4

6

8

10

12

14

16

18

scv = 0.8
scv = 1

scv = 1.05

Figure 3.10: Results of example with EMP distribution.

75

3.2.4 Summary

MOSEL-2 is now able to pre-process rules that contain empirical distributions, that are de-
fined by their mean and their variance. Empirical distributions are approximated automat-
ically by substituting them using exponential, general exponential or phase type constructs.
All these constructs only contain Markovian distributions and therefore can be solved using
numerical analysis.

The pre-processor can be extended for generating further phase-type constructs, for example
to enable numerical analysis of Cox, hyperexponential, hypoexponential or Erlang distribu-
tions, without forcing the user to specify these constructs manually. Some useful hints for
the implementation are given in Appendix A.

The pre-processor allows the usage of arbitrary positive parameters for the mean and the
variance. Nevertheless, the smaller the SCV is, the more stages are needed for the phase-
type substitution. Therefore, the model size increases significantly. This is no big problem
for MOSEL-2, but for the underlying tools.

For example, a simple MOSEL-2 model with a SCV of 0,0001 was pre-processed and trans-
lated to CSPL by MOSEL-2 within about 45 minutes using about 700 MB of RAM. The
resulting CSPL file had a size of about 2 MB. It contained over 10000 nodes and as many
transitions.

Unfortunately, SPNP cannot handle such large models. Tests showed, that SPNP is able to
solve a simple model containing a single EMP distribution with SCVs down to 0.004675 (214
generated nodes) and that TimeNET can solve the same model with SCVs down to 0.017245
(58 generated nodes).

MOSEL-2 itself does not restrict the parameters, because the smallest working SCV strongly
depends on the complexity of the entire model and on the evaluation tool chosen. A possible
check of the SCV could be introduced in line 1739 of rule pp.c. As a rule-of-thumb we can
say, that we should avoid SCVs smaller than 0.05, but a fixed lower limit with this value
would be too restrictive.

76

Chapter 4

Using improved MOSEL-2

We will now use the new MOSEL-2 version 2.10 to finally evaluate non-Markovian models of
our GSM/GPRS/DOVE system with DeTVoC.

4.1 Simulating non-Markovian GSM/GPRS Model

At first, we will simulate the non-Markovian model introduced in Chapter 2.2, now using
MOSEL-2 with SPNP 6.1 simulation. The results are obtained using 100 simulation runs
with a simulation length of 20000 each within 85.600s/0.160s/85.740s (user/system/real).

Unfortunately, this results show very strange behaviour for the voice call loss probability,
which takes negative values:

Simulation of "thesis_2_2_4.mos" by SPNP

(length: 20000, runs: 100)

Parameters:

v_ar = 0.005

Results:

v_loss = -0.59998

d_loss = 0.24

p3_full = 0

==

Parameters:

v_ar = 0.007

Results:

v_loss = -0.285713

d_loss = 0.59

p3_full = 0

==

Parameters:

v_ar = 0.009

Results:

v_loss = -0.66667

d_loss = 0.89

p3_full = 0

==

[...]

77

Evaluation Model Configuration Result
Tool Method steady-st./trans. DOVE DeTVoC MEAN(p1)

SPNP DES (20000/100)1 transient (20000)2 20×AFTER 7 20×AFTER 5..10 0.79999

SPNP DES (1000/100) transient (1000) 20×AFTER 7 20×AFTER 5..10 0.800015

SPNP DES (1000/1000) transient (1000) 20×AFTER 7 20×AFTER 5..10 0.686

SPNP DES (10000/10000) transient (10000) 20×AFTER 7 20×AFTER 5..10 0.7142

SPNP num. analysis steady-state 20×RATE 1/7 20×RATE 1/7.5 0.499932

SPNP num. analysis transient (1000) 20×RATE 1/7 20×RATE 1/7.5 0.499909

SPNP DES (1000/1000) transient (1000) 20×RATE 1/7 20×RATE 1/7.5 0.715

SPNP num. analysis steady-state RATE 1/7*p3 RATE 1/7.5*p3 0.499932

SPNP num. analysis transient (1000) RATE 1/7*p3 RATE 1/7.5*p3 0.499909

SPNP DES (1000/1000) transient (1000) RATE 1/7*p3 RATE 1/7.5*p3 0.715

SPNP DES (20000/20000) transient (20000) RATE 1/7*p3 RATE 1/7.5*p3 0.7045

TimeNET num. analysis steady-state RATE 1/7*p3 RATE 1/7.5*p3 0.499927

TimeNET DES steady-state3 RATE 1/7*p3 RATE 1/7.5*p3 0.499952

TimeNET DES steady-state3 20×RATE 1/7 20×RATE 1/7.5 0.498936

TimeNET DES steady-state3 20×AFTER 7 20×RATE 1/7.5 N/A4

Table 4.1: Investigation of MEAN(p1).

Remember, that the v loss was calculated using:

v loss := 1 - ((v sr * MEAN(p1)) / v ar);

This term can only be negative, if (v sr * MEAN(p1)) / v ar, i.e. the probability that a
voice connection request is accepted, is greater than one. Then the mean arrival rate v ar is
lower than the mean service rate v sr – which theoretically can not happen. Because v sr

and v ar are values specified by the user, the problem has to be the simulation result of
MEAN(p1). MEAN(p1) should always be less than var

vsr
.

To get an idea, why this error happens, we will now check the behaviour of MEAN(p1) for
v sr=0.01, v sr=0.005, several evaluation methods and model configurations. Theoretically,
MEAN(p1) should always be less than 0.5. The results of this investigation are shown in Table
4.1.

Apparently, SPNP 6.1 simulation has problems to provide correct results in this configura-
tion. Unfortunately, neither a reasonable cause nor an adequate workaround for this faulty
behaviour could be found in time.

1(SIM LENGTH/SIM RUNS)
2(time point of transient evaluation)
3but upper real-time limit of 10 minutes
4same error as in Chapter 2.2.5

78

4.2 Using Empirical Distributions

The failure of the simulation methods stress the importance of numerical analysis. We
will now try to obtain results, if we substitute the deterministic (DOVE, t7) and uniform
(DeTVoC, t6) distributions in our last GSM/GPRS model (→ Chap. 2.2, p. 51) by the new
empirical distribution. For the mean value, i.e. the first parameter of the empirical distribu-
tion, we will choose the deterministic firing time or the mean of the lower and upper bound
of the uniformly distributed firing time, respectively. The second parameter, i.e. the SCV
will be chosen smaller than one, because the deterministic and uniform distribution show less
variability than an exponential distribution:

The MOSEL-2 model description is changed as follows:

79

1 /** CONSTANT AND PARAMETER PART ***/

2 // GSM user behaviour

3 PARAMETER v_ar := 0.005 .. 0.015 STEP 0.002; /* mean voice call arrival rate */

4 CONST v_ht := 100; /* mean voice call holding time */

5 CONST v_sr := 1/v_ht; /* mean voice call service rate */

6 CONST v_dt_min := 5; /* minimum voice call waiting time */

7 CONST v_dt_max := 10; /* maximum voice call waiting time */

8 CONST v_dt_avg := (v_dt_min+v_dt_max)/2; /* mean voice call waiting time */

9 CONST v_dt_scv := 0.1; /* low variability of voice call waiting time */

10 CONST v_dt_var := v_dt_scv * v_dt_avg * v_dt_avg; /* variance */

11

12 // GPRS data behaviour

13 CONST d_ar := 0.7; /* mean data burst arrival rate */

14 CONST d_sz := 10 * 8; /* mean data burst size (kbit) */

15

16 // network configuration

17 CONST freq_c := 1; /* carrier frequencies in cell */

18 CONST chans_f := 8; /* physical channels per freq. */

19 CONST chans := freq_c*chans_f; /* overall numb. of channels */

20 CONST chans_sig := 2; /* channels used for signalling */

21 CONST chans_use := chans-chans_sig; /* channels available for users */

22 CONST chans_gpr := 0; /* channels reserved for GPRS */

23 CONST chans_gsm := chans_use - chans_gpr; /* max. numb. of voice channels */

24 CONST gprs_max := 32 * freq_c; /* maximum number of GPRS users */

25 CONST pdch_dr := 21.4; /* data rate per PDCH (kbit/s) */

26 CONST burst_sr := pdch_dr/d_sz; /* burst service rate per PDCH */

27 CONST dove_dt := 7; /* delay time for DOVE */

28 CONST dove_dt_scv := 0.01; /* very low variability of DOVE delay time */

29 CONST dove_dt_var := dove_dt_scv * dove_dt * dove_dt; /* variance */

30 CONST dove_res := 1; /* number of PDCHs saved from immediate pre-emption */

31 CONST dove_vch := chans_use - dove_res; /* always available for voice */

32

33 /** NODE PART ***/

34 NODE p1[chans_gsm] := 0; /* p1 */

35 NODE p2[gprs_max] := 0; /* p2 */

36 NODE p3[20] := 0; /* p3 */

37

38 /** RULE PART ***/

39 FROM EXTERN TO p3 RATE v_ar; /* t1 */

40 FROM p1 TO EXTERN RATE v_sr * p1; /* t2 */

41 FROM EXTERN TO p2 RATE d_ar; /* t3 */

42 FROM p2 TO EXTERN RATE burst_sr * (chans_use - p1); /* t4 */

43 IF (p1 < dove_vch) FROM p3 TO p1; /* t5 */

44

45 @<1..20>{ /* t6 */

46 IF p3 >= # FROM p3 TO EXTERN EMP (v_dt_avg, v_dt_var); /* t6 */

47 } /* t6 */

48

49 @<1..20>{ /* t7 */

50 IF p3 >= # FROM p3 TO p1 EMP (dove_dt, dove_dt_var); /* t7 */

51 } /* t7 */

52

53 /** RESULT PART ***/

54 PRINT v_loss := 1 - ((v_sr * MEAN(p1)) / v_ar); /* voice call loss prob. */

55 PRINT d_loss := PROB(p2==gprs_max) + PROB(p1==chans_use); /* data burst loss */

56 PRINT p3_full := PROB(p3==20);

57

58 /** PICTURE PART **/

59 PICTURE "call and burst loss probability"

60 PARAMETER v_ar

61 CURVE d_loss

62 CURVE v_loss

63 XLABEL "voice call arrival rate"

64 YLABEL "call and burst loss probability"

80

The use of empirical distributions with low SCV within loop constructs is very dangerous
because the final model will be very large.

For example, the translation of this model description to CSPL by MOSEL-2 takes
42.290s/0.070s/42.350s (user/system/real). The six CSPL files have a size of about 1 MB
each. To compile one CSPL file, it takes SPNP more than 20 minutes (real). SPNP is neither
able to solve the compiled model:

SPNP Version 6.1

The analysis is starting.

EXIT: hash table overflow, too many symbols

make: *** [all] Error 1

As a workaround, we could think of exploiting the quasi-Markov property of the empirical
distribution’s substitution construct. As we know, the PH substitution uses the reciprocal of
the mean firing time as parameter for exponential distributions. Therefore, we can divide the
mean firing time by the number of tokens in place p3 to mimic the infinite server transitions
t6 and t7 instead of using the loop constructs:

[...]

FROM p3 TO EXTERN EMP (v_dt_avg/p3, v_dt_var/(p3*p3)); /* t6 */

FROM p3 TO p1 EMP (dove_dt/p3, dove_var/(p3*p3)); /* t7 */

[...]

Note, that the variance is σ2 = c2 · t̄2. Therefore, if we divide the mean by p3, we have to
divide the variance by p32.

But unfortunately, the use of state dependent expressions as parameter for the empirical
distribution is prohibited, because in general this would result into a state dependent SCV
and therefore would require state dependent substitutions for the empirical distribution,
which is not implementable with adequate effort.

Therefore, we will restrict ourselves to the investigation of the model with empirical dis-
tributed DeTVoC. The DOVE-delay will be modelled as exponential distribution again:

[...]

@<1..3>{ /* t6 */

IF p3 >= # FROM p3 TO EXTERN EMP (v_dt_avg, v_dt_var); /* t6 */

} /* t6 */

FROM p3 TO p1 RATE 1/dove_dt * p3; /* t7 */

[...]

The results will prove, that a capacity of 3 for place p3 still is enough.

The steady-state results are obtained within 1948.860s/5.340s/32min33.960s
(user/system/real) by using MOSEL-2 with SPNP’s numerical analysis and are shown
in Figure 4.1.

In the textual output file we see, that the probability that place p3 is full, is very low
(< 10−6). Thus, a capacity of 3 is enough.

81

voice call arrival rate

call and burst loss probability

0.005 0.007 0.009 0.011 0.013 0.015 0.017

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
d_loss (scv = 0.1)

v_loss (scv = 0.1)

d_loss (scv = 0.4)

v_loss (scv = 0.4)

d_loss (scv = 0.7)

v_loss (scv = 0.7)

d_loss (scv = 1)

v_loss (scv = 1)

Figure 4.1: GPRS/DeTVoC with DOVE: voice call and data loss probability.

The graphical output shows, that if we aim at balancing the probability for voice and data loss,
the assumption, that the user waiting time (DeTVoC) is exponentially distributed (SCV=1),
is too optimistic. The variability has a fair effect on the loss probabilities and therefore should
definitively be considered. The assumption, that exponential distributions can be generally
used for appropriate modelling of firing times is certainly not applicable.

82

Chapter 5

Conclusion and Future Work

The final chapter of this thesis will give a brief summary of what has been achieved and
which lessons have been learned. Furthermore, motivation for future work is given.

5.1 What has been achieved?

In this thesis, MOSEL-2 2.1 was used to model the air-interface of a single GSM/GPRS
cell under consideration of delay tolerant voice calls (DeTVoC). The investigations aimed on
optimising the call admission control (CAC) algorithm to assure user contentment despite
increasing utilisation of the system.

Unfortunately, only relative investigations could be done, because – as all too often – real
measured data was not available. A closer co-operation with mobile technology companies
and/or access to equipment for measuring real mobile traffic would be preferable. Then the
practical usefulness of this and related work would be more noticeable.

Speaking of practical work: A lot of time was invested in coding improvements to MOSEL-
2, like the handling of SPNP 6.1 Simulation and the totally new rule pre-processor. An
overall number of more than 3000 lines of C-code were developed or changed – not counting
unfruitful approaches. Successful operating outcomes often belie the actual time exposure.
The extensive search for self-inflicted errors was very time-consuming.

But also third party faults can be very time-consuming, for example by investigating why
some evaluation tool would not produce reasonable or not even any results for a special
setting of parameters. Several simulation runs took hours, just to find out, that the results
cannot be used.

Nevertheless, it could be proven, that the MOSEL-2 language is definitively capable for
modelling the behaviour of complex systems. These models can also be translated by the
MOSEL-2 environment to the tool specific input files without greater difficulties. The eval-
uation power of MOSEL-2 instead heavily depends on the abilities and on the reliability of
the used evaluation tool.

83

5.2 What has still to be done?

The MOSEL-2 models developed in this thesis could be quite easily extended for evaluating
the GPRS data rate, or for considering handovers, several frequencies or retrials. These
aspects could not be investigated in this thesis due to lack of time.

Numerical analysis methods always seemed to be more reliable and definitively faster than
discrete event simulation. In future computer systems more and more memory will be avail-
able for the state space generation and more and more algorithms are developed to allow
the numerical analysis of non-Markovian models. Therefore, it will be desirable, to make the
arising tools available to MOSEL-2 by providing appropriate translators.

The numerical analysis of non-Markovian distributions is also the goal of the rule pre-
processor presented in this thesis. The pre-processor can be extended quite easily to handle
further phase-type distributions like the Erlang (→ Chap. A, p. 85), hyperexponential, hy-
poexponential or Cox distribution.

A minor task would be to enhance the result parser to parse the simulation confidence intervals
and provide this information in the result file.

We have seen, that the result measures of some evaluation tools might not provide support
for complex terms. Perhaps it would be suggestive, to rewrite MOSEL-2’s tool specific input
file generators (i.e. model translators) and especially the result parser in such a manner, that
only the basic result measures (MEAN, PROB and UTIL) are requested from the evaluation
tool. MOSEL-2’s result parser could then use the results of this basic measures to compute
the complex results that were desired by the user. This would also make the introduction of
new evaluation tools to MOSEL-2 easier.

Finally, we can only hope, that the MOSEL project will not die when it can no longer be
maintained by the ANA Group at the University of Erlangen.

84

Appendix A

How to insert new Distributions to
the Rule Pre-Processor

This chapter will give some hints on how to insert a new pre-processor distribution. One of
the easiest phase-type distributions, the Erlang distribution, will be taken as example. The
given source code line numbers are suggestions, where the according changes should be done
or where similar constructs are already implemented, and refer to MOSEL-2 version 2.10.

1. At first, we have to choose a keyword for the new distribution. We could take ERL for
instance, because ERLANG is already used by a non-pre-processed distribution that can
be evaluated using SPNP 6.1 simulation.

2. Then we have to consider the parameters, this distribution will need. In our case it will
be the rate µ of each state and the number of states k.

3. We prefer “ERL (µ, k)” as the according MOSEL-2 syntax for the new distribution.

4. The new keyword has to be introduced to the scanner (scanner.l:134) and to the parser
(parser.y:1367).

5. We have to insert the new distribution type DIST PP ERL to model.h (line 150).

6. When parsing a rule containing the ERL distribution, we have to call function
set distrib with parameter DIST PP ERL and set the variable pp state to PP USED as
it is done for the EMP distribution (parser.y:1597-1601).

7. Similar to DIST PP EMP (parser.y:758-765) we have to check the parameters of our new
distribution. µ has to be positive and k has to be a positive integer. We can use
the functions expr is positive (parser.y:172-185) and expr is cardinal (parser.y:
152-168) for this purpose.

8. If a rule now contains an “ERL (µ, k)”-part, the rule pre-processor is invoked.

9. Hint: for easier debugging, the rule pre-processor rule pp.c provides different debug
levels with different debug outputs. The debug output can be activated in line 34 and
should be deactivated again before checking the source into the CVS repository.

85

p1 p2

n1 nkn2

RATE
µ

RATE
µ

RATE
µ

Figure A.1: Conceptual Model for Erlang Substitution.

10. The pre-processor has to recognise the new distribution type at first. This should be
done similar to DIST PP EMP (rule pp.c: 1900-1912). Instead of function pp emp we will
call the function pp erl, that will be developed below.

11. The function pp erl will be responsible for pre-processing the ERL distribution.

12. Similar to function pp emp (rule pp.c: 1687-1850) the function pp erl will
accept the three parameters (pp rule t *pprule, int source rule index, int

temp node count) and will return the modified variable temp node count.

13. Now we will check all parameter settings for different values of k using a for-loop and
a list for storing these values (cp. rule pp.c: 1422-1449).

14. If the list contains more than one element, we have to provide each sub-rule with an
appropriate allowance condition, which has to be constructed as MOSEL-2 expression
by using the functions new bin expr(), new mon expr() and/or new value expr(),
that are provided by expr.c.

15. Now we have to consider the architecture of the relay circuit that will mimic the Erlang
distributed firing time by using only exponential distributions. This architecture is
shown in Figure A.1.

16. The architecture of the Erlang Substitution is similar to the architecture of the EMP
distribution’s PH substitution (→ Fig. 3.7, p. 72) except that all rates are equal to µ.
Therefore, the implementation is quite similar to the function pp dist ph (rule pp.c:
1374-1683).

86

Appendix B

Abbreviations

1G 1st Generation of mobile (telephone) systems

2.5G Generation 2.5 of mobile (telephone) systems

2G 2nd Generation of mobile (telephone) systems

3G 3rd Generation of mobile (telephone) systems

8PSK 8-Phase Shift Keying

AMPS Advanced Mobile Phone System

ARQ Automatic Repeat reQuest

BCMP Baskett, Chandy, Muntz and Palacios

BTS Base Transceiver Station

CAC Call Admission Control

CB Citizen Band

CDF Cumulative Distribution Function

CDMA Code Division Multiple Access

CDM Code Division Multiplexing

CPU Central Processing Unit

CS Coding Scheme

CSPL C-based Stochastic Petri net Language

CTMC Continuous Time Markov Chain

D-AMPS Digital Advanced Mobile Phone System

DCS Digital Cellular System

87

DECT Digital Enhanced Cordless Telecommunications

DES Discrete Event Simulation

DeTVoC Delay Tolerant Voice Call

DOVE Delay Of Voice End-user

DSPN Deterministic and Stochastic Petri Net

DTMC Discrete Time Markov Chain

ECSD Enhanced Circuit-Switched Data

EDGE Enhanced Data (rates) for GSM/Global Evolution

EGPRS Enhanced General Packet Radio Service

ESPN Extended Stochastic Petri Net

ETSI European Telecommunications Standards Institute

FCFS First Come First Served

FDD Frequency Division Duplex

FDMA Frequency Division Multiple Access

FDM Frequency Division Multiplexing

FEC Forward Error Correction

GMSK Gaussian Minimum Shift Keying

GPRS General Packet Radio Service

GSM Global System for Global communication

GSMP Generalised Semi Markov Process

GSPN Generalised Stochastic Petri Net

HSCSD High-Speed Circuit-Switched Data

ID IDentification

IMT International Mobile Telecommunications

IMTS Improved Mobile Telephone System

IS Infinite Server

ITU International Telecommunication Union

LAN Local Area Network

LCFS Last Come First Served

88

MAN Metropolitan Area Network

MCS Modulated Coding Scheme

MOSEL MOdelling, Specification and Evaluation Language

MTTF Mean Time To Failure

PAN Personal Area Network

PDCH Packet Data Channel

PDC Personal Digital Cellular

PDP Packet Data Protocol

PMF Probability Mass Function

PRD Preemptive Repeat Different

PRI Preemptive Repeat Identical

PR Preemptive Resume

PRS Preemptive ReSume

PS Processor Sharing

QoS Quality of Service

RAM Random Access Memory

RFT Remaining Firing Time

RR Round Robin

SDMA Space Division Multiple Access

SDM Space Division Multiplexing

SDU Service Data Unit

SIRO Service In Random Order

SMP Semi Markov Process

SOR Successive Over-Relaxation

SPNP Stochastic Petri Net Package

TACS Total Access Communication System

TBF Temporary Block Flow

TDD Time Division Duplex

TDMA Time Division Multiple Access

89

TDM Time Division Multiplexing

TFI Temporary Flow Identity

UMTS Universal Mobile Telecommunication System

UTRAN UMTS Terrestrial Radio Access Network

WAN Wide Area Network

W-CDMA Wide-band Code Division Multiple Access

90

Bibliography

[1] K. Begain, G. Bolch, H. Herold,
Practical Performance Modeling. Application of the MOSEL Language,
Kluwer Academic Publishers, 2001,
ISBN 0-7923-7951-9

[2] B. Beutel,
Integration of the Petri Net Analysator TimeNET into the Model Analysis
Environment MOSEL,
University of Erlangen-Nürnberg, 2003,
http://www.linguistik.uni-erlangen.de/˜bjoern/mosel-2.pdf (26.10.03)

[3] L. Wolf, J. Schiller, M. Zitterbart,
Vorlesung Mobilkommunikation,
Technische Universtiät Braunschweig, 2003,
http://www.ibr.cs.tu-bs.de/lehre/ss03/mk/ (27.10.03)

[4] J.J. O’Connor, E.F. Robertson,
Andrei Andreyevich Markov,
University of St Andrews, 1996,
http://www-gap.dcs.st-and.ac.uk/˜history/Mathematicians/Markov.html (20.04.04)

[5] Markov chain,
in: Wikipedia, the free encyclopedia,
2004,
http://en.wikipedia.org/wiki/Markov chain (20.04.04)

[6] C.G. Cassandras, S. Lafortune,
Introduction to Discrete Event Systems, Kluwer Academic Publishers, 1999, ISBN
0-7923-8609-4

[7] G. Bolch, S. Greiner, H. de Meer, K.S. Trivedi,
Queueing networks and Markov chains,
Wiley, 1998,
ISBN: 0-471-19366-6

[8] V.I. Romanovski,
Discrete Markov Chains,
Wolters-Noordhoff Publishing, 1970,
ISBN: 90-01-76185-2

91

[9] G. Bolch,
Leistungsbewertung von Rechensystemen mittels analytischer Warteschlan-
genmodelle,
B.G.Teubner, 1989,
ISBN: 3-519-02279-6

[10] K.S. Trivedi,
SPNP User’s Manual. Version 6.0,
Duke University, Durham, USA, 1999,
http://www.ee.duke.edu/˜chirel/MANUAL/manual.pdf (23.04.04)

[11] C.A. Petri,
Kommunikation mit Automaten,
in: Schriften des Institutes für instrumentelle Mathematik,
Bonn, 1962

[12] P. Wüchner,
Extending the Interface between the Modeling Languages MOSEL and CSPL
by Adding Simulation Constructs,
University of Erlangen-Nürnberg, 2003,
http://www.xn–wchner-3ya.de/pub/MOSEL2-2 PW.pdf (25.04.04)

[13] I.R. Chen,
Stochastic Petri Net Models,
in: Lecture Slides on Modeling and Evaluation of Computer Systems, pp. 150-174,
Virginia Polytechnic Institute and State University, 2002
http://people.cs.vt.edu/˜irchen/5214/pdf/p150-174.pdf (25.04.04)

[14] G. Bolch,
Modellierung und Leistungsbewertung von Rechensystemen,
University of Erlangen-Nürnberg, 2002,
http://www4.informatik.uni-erlangen.de/Lehre/WS02/V MLR/Skript/ (26.04.04)

[15] I.N. Bronstein, K.A. Semendjajew, G. Musiol, H. Mühlig,
Taschenbuch der Mathematik,
Harri Deutsch, 1997,
ISBN: 3-8171-2003-6

[16] K. Park, W. Willinger,
Self-Similar Network Traffic: An Overview,
Purdue University, AT&T Labs-Research,
http://netlab.cs.tsinghua.edu.cn/˜xuke/paperlist/intro-ss-chap.ps (28.04.04)

[17] J. Banks, J.S. Carson, B.L. Nelson, D.M. Nicol,
Discrete-Event System Simulation,
Prentice-Hall, 2001,
ISBN: 0-13-088702-1

[18] On the Simulation of Stochastic Petri Nets,
Computer Science Department, College of William and Mary,
http://www.cs.wm.edu/˜gli/Wpapers/PetriNet.ps (06.02.03)

92

[19] I.M. Sobol,
Die Monte-Carlo-Methode,
VEB Deutscher Verlag der Wissenschaften, 1971

[20] N.P. Buslenko, D.I. Golenko, Yu.A. Shreider, I.M. Sobol, V.G. Sragovich,
The Monte Carlo Method,
Pergamon Press, 1966

[21] B. Tuffin, K. S. Trivedi,
Implementation of Importance Splitting Techniques in Stochastic Petri Net
Package,
Duke University, Campus universitaire de Beaulieu,
ftp://ftp.eos.ncsu.edu/pub/ccsp/papers/ppr0003.PS (05.05.04)

[22] P. E. Heegaard,
Rare Event Provoking Simulation Techniques,
The Norwegian Institute of Technology, 1995,
http://www.item.ntnu.no/ poulh/publications/its.pdf (05.05.04)

[23] P. Wüchner, K. Al-Begain, J. Barner, G. Bolch,
Modelling a single GSM/GPRS Cell with Delay Tolerant Voice Calls using
MOSEL-2,
in: D. Al-Dabass (Ed.), Proceedings of the UK Simulation Conference, pp. 88-94,
Oxford, March 2004,
ISBN: 1-84233-099-3,
http://www.xn--wchner-3ya.de/pub/UKSim04 PW.pdf (05.05.04)

[24] A. Zimmermann,
TimeNET 3.0 - User Manual,
TU Berlin, 2001,
http://pdv.cs.tu-berlin.de/˜timenet/TimeNET-UserManual30.ps.gz (05.05.04)

[25] G. Bolch, S. Greiner, H. Jung, R. Zimmer,
The Markov Analyzer MOSES,
Universität Erlangen, 1994
http://www4.informatik.uni-erlangen.de/TR/pdf/TR-I4-94-10.pdf (05.05.04)

[26] A.S. Tanenbaum,
Computernetzwerke,
Pearson Studium, 2003,
ISBN: 3-8273-7046-9

[27] A.S. Tanenbaum,
Computer Networks,
Prentice-Hall, 1996,
ISBN: 0-13-394228-1

[28] M. Ermel, T. Müller, J. Schüler, M. Schweigel, K. Begain,
Performance of GSM networks with general packet radio service,
in: Performance Evaluation, 48, pp. 285-310,
Elsevier Science, 2002

93

[29] B. Mielke,
Dafu - Datenfunk in Deutschland,
http://www.dafu.de (07.05.04)

[30] B. Ghribi, L. Logrippo,
Understanding GPRS: The GSM Packet Radio Service,
in: Computer Networks, 34, pp. 763-779,
2000,
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Papers/GPRS Tutorial.pdf (07.05.04)

[31] K. Begain, M. Ermel, T. Müller, J. Schüler, M. Schweigel,
Analytical Call Level Model of a GSM/GPRS Network,
in: Proceedings of SPECTS’2000, Vancover, Canada,
July 2000,
http://141.30.128.24/ schweige/Paper/spects2000.pdf (08.05.04)

[32] EDGE – Introduction of high-speed data in GSM/GPRS networks,
Ericsson AB, 2003,
http://www.ericsson.com/products/white papers pdf/edge wp technical.pdf (08.05.04)

[33] Nokia 6220 – Funktionen,
Nokia, 2004,
http://www.nokia.de/de/mobiltelefone/modelluebersicht/6220/funktionen/41082.html
(09.05.04)

[34] Nokia 6610i – Funktionen,
Nokia, 2004,
http://www.nokia.de/de/mobiltelefone/modelluebersicht/6610i/funktionen/105702.html
(09.05.04)

[35] M. Mahdavi, R.M. Edwards, S.R. Cvetkovic,
Policy for Enhancement of Traffic in TDMA Hybrid Switched Integrated
Voice/Data Cellular Mobile Communications Systems,
in: IEEE Communications Letter, pp. 242-2440,
June 2001,
http://www.shef.ac.uk/eee/ecs/opnet/Mehdi IEEE Comm letter.ps (10.05.04)

[36] T. Okuda, Y. Ando, T. Ideguchi, X. Tian,
A Simplified Evaluation for Delay of Voice End-User in TDMA Integrated
Voice/Data Cellular Mobile Communications Systems,
in: GLOBECOM 2002 - IEEE Global Telecommunications Conference, 1, pp. 900-904
November 2002,
http://www.aichi-pu.ac.jp/ist/Staff/Chiiki/okuda200208/Pdf/lab/published/globecom2002.pdf

(10.05.04)

[37] Overview of 3GPP Release 99,
ETSI MCC, 2004,
http://www.3gpp.org/Releases/Rel99-Features-Draft.pdf (10.05.04)

94

[38] About 3GPP,
3GPP, 2004,
http://www.3gpp.org/About/about.htm (10.05.04)

[39] 3GPP Specification - Releases (and phases and stages),
3GPP, 2004,
http://www.3gpp.org/specs/releases.htm (10.05.04)

[40] 3GPP Specification - Release contents and functionality,
3GPP, 2004,
http://www.3gpp.org/specs/releases-contents.htm (10.05.04)

[41] K. Begain, G. Bolch, M. Telek,
Scalable Schemes for Mobile Networks with Multiple Service,
Universität Erlangen, 1998
http://www4.informatik.uni-erlangen.de/TR/pdf/TR-I4-98-04.pdf (13.05.04)

[42] J. Roszik, C.S. Kim, J. Sztrik,
Retrial Queues in the Performance Modeling of Cellular Mobile Networks
using MOSEL,
in: International Journal of Simulation: Systems, Science and Technology,
(submitted 2003)

[43] J. Färber, S. Bodamer, J. Charzinski,
Statistical evaluation and modelling of Internet dial-up traffic,
in: Proceedings of SPIE Photonics East ’99 Conference on Performance and Control of
Network Systems III, pp. 112-121,
Boston, 1999,
http://www.ind.uni-stuttgart.de/Content/Publications/Archive/Fa spie 30631.pdf (18.05.04)

[45] I. Adan,
Basic concepts from probability theory,
Technische Universiteit Eindhoven, 2003,
http://www.win.tue.nl/ iadan/sdp/h1.pdf (18.05.04)

[46] F. Barcelò, J. Jordàn,
Channel Holding Time Distribution in Public Cellular Systems,
in: Proceedings of 16 th International Teletraffic Congress, pp. 107-116,
Edinburgh, 1999,
http://citeseer.ist.psu.edu/barcel99channel.html (18.05.04)

[47] M. Garetto, D. Towsley,
Modeling, Simulation and Measurements of Queuing Delay under Long-tail
Internet Traffic,
in: SIGMETRICS’03,
San Diego, California, June 2003,
http://www.telematics.polito.it/garetto/papers/p004-garetto.ps.gz (19.05.04)

95

[48] Y. Li, K. Al-Begain, I. Awan,
Performance Modelling of GSM/GPRS Mobile System with MOSEL,
in: 4th PGNet, pp. 245-250,
Liverpool, June 2003,
http://www.cms.livjm.ac.uk/pgnet2003/submissions/Paper-30.pdf (19.05.04)

[49] V. Paxson, S. Floyd,
Wide-Area Traffic: The Failure of Poisson Modeling,
in: IEEE/ACM Transactions on Networking, 2(3), pp. 226 - 224,
June 1995,
http://www.maths.tcd.ie/˜eoin/index/papers/paxson.floyd failure95.pdf (19.05.04)

[50] S. Bodamer, J. Charzinki, K. Dolzer,
Dienstgütemetriken für elastischen Internetverkehr,
in: Praxis der Informationsverarbeitung und Kommunikation (PIK), 25(3), pp. 82 - 89,
2002,
http://www.ind.uni-stuttgart.de/Content/Publications/Archive/Bo PIK2002 34653.pdf (19.05.04)

[51] A. Horvàth, M. Telek,
Approximating heavy tailed behaviour with Phase type distributions,
in: G. Latouche, P. Taylor (Eds.), Advances in Algorithmic Methods for Stochastic
Models, Notable Publications, pp. 191 - 213,
2000,
http://www.di.unito.it/˜horvath/publications/HoTe00.html (19.05.04)

[52] S.K. Bose,
QNAT – A Graphical Queueing Network Analysis Tool for General Open
and Closed Queuing Networks,
2000,
http://home.iitk.ac.in/˜skb/qbook/QNAT Slides.PDF (20.02.04)

[53] R.D. Gupta, D. Kundu,
Generalized Exponential Distribution: Statistical Interference,
Technical Report, The University of New Brunswick, Saint John, 1999,
http://home.iitk.ac.in/˜kundu/pap.pdf (20.02.04)

[54] R.D. Gupta, D. Kundu,
Generalized Exponential Distribution: Different Method of Estimations,
in: Journal of Statistical Computation and Simulation, 2001a, Vol. 69, pp. 315-338
http://home.iitk.ac.in/˜kundu/paper62.pdf (20.02.04)

[55] A. Kouvatsos, N. Tabet-Aouel,
An ME-based approximation for multi-server queues with preemptive prior-
ity,
in: European Journal of Operational Research 77, pp 496-515,
Elsevier, 1994

96

[56] K. Al-Begain,
Using Subclass of PH Distributions for the Modeling of Empirical Activities,
in: Proc. ICSCS 93, 18th International Conference on Statistics and Computer Sciences,
pp. 141-152,
Cairo, 1993

[57] H. de Meer,
Transiente Leistungsbewertung und Optimierung Rekonfigurierbarer Fehler-
toleranter Rechensysteme,
in: Arbeitsberichte des Instituts für mathematische Maschinen und Datenbanken 25
(10), Universität Erlangen, 1992

[58] G. Ciardo,
Toward A Definition of Modeling Power for Stochastic Petri Net Models,
in: Proc. of the Int. Workshop on Petri Nets and Performance Models,
Madison, August 1987
http://www.cs.wm.edu/˜ciardo/pubs/1987PNPM-ModelingPower.pdf (28.05.04)

97

98

Index

M ⇒ M property, 14
1G, 25
2.5G, 28
2G, 25
3G, 32
3GPP, 32
8-phase shift keying, 31
8PSK, 31

AMPS, 25
analysis

availability, 3
dependability, 3
performability, 3
performance, 3
reliability, 3
stationary, 16
steady-state, 16
transient, 16

arc, 11
arc multiplicity, 12
ARQ, 29
arrival process, 8
automatic repeat request, 29
availability analysis, 3

base transceiver station, 27
batch

processing, 8, 9
size, 9

BCMP theorem, 15
BTS, 27
buffer size, 9

CAC, 30, 31
call admission control, 30
calling population, 9
CDF, 4
CDMA, 25, 32
CDMA2000, 32

cell, 27
cell concept, 25, 27
chain, 4
chip rate, 33
chip sequence, 32
clock, 18
clock structure, 4
closed tandem network, 8, 11, 19
cluster, 27
cluster size, 27
code division multiple access, 25, 32
coding schemes, 29
command line, 22
Complete partitioning, 29
complete partitioning scheme, 31
Complete sharing, 29
convolution algorithm, 15
CSPL, 38
CTMC, 2, 4, 10, 14, 16, 37
cumulative distribution function, 4

D-AMPS, 25
delay class, 30
delay of voice end-user, 31
dependability analysis, 3
dependence arc, 13
DES, 17
deterministic and stochastic Petri net, 11
DeTVoC, 42
discrete event simulation, 17
discrete event system, 2
DOVE, 31
DSPN, 11

extended, 52
DTMC, 4

ECSD, 31
EDGE, 31
eDSPN, 11, 52
EGPRS, 31

99

EMP, 51, 64
empirical distribution, 51, 64
enhanced circuit-switched data, 31
enhanced GPRS, 31
ESPN, 11
ETSI, 25
event, 2
extended deterministic and stochastic Petri

net, 11
extended stochastic Petri net, 11

FCFS, 9
FDD, 26
FDM, 26
FDMA, 25, 26
FEC, 29
firing, 11
firing time, 11
first-come-first-served, 9
forward error correction, 29
frame hierarchy, 26
frequency division duplex, 26
frequency division multiple access, 25, 26
frequency division multiplexing, 26

Gaussian minimum shift keying, 31
GE, 65
general packet radio service, 28
generalised semi-Markov process, 4
generalised stochastic Petri net, 11
generator matrix, 7
global system for mobile communication,

25
GMSK, 31
Gordon/Newell theorem, 15
GPRS, 28
Groupe Spéciale Mobile, 25
GSM, 24, 25
GSMP, 4
GSPN, 11, 35
GSPNs, 16
guard function, 2, 12, 13

homogeneous, 16
HSCSD, 28

immediate, 11
importance sampling, 18

importance splitting, 18
IMTS, 25
infinite server, 9, 36
inhibitor arc, 12
inter-event time, 4
IS, 9
ITU, 32

Jackson theorem, 15
jobs, 8

Kendall’s notation, 8

LAN, 24
last-come-first-served, 9
LCFS, 9
local area network, 24
local balance, 14

MAN, 24
marginal probabilities, 17
marking, 11
Markov chain, 4, 4, 10, 16, 17

continuous-time, 4
discrete-time, 4
homogeneous, 5
time-homogeneous, 5

Markov property, 4, 8, 16, 17
Markov, A.A., 4
Markovian analysis, 16, 17
master transition, 13
MCS, 31
mean time to failure, 3
mean value analysis, 16
memoryless property, 4, 37
metropolitan area network, 24
mobile communication systems, 24
MOdelling, Specification and Evaluation

Language, 19
modulated coding scheme, 31
Monte Carlo method, 18
MOSEL, 2, 19
MOSEL-2, 19
MOSES, 22
MTTF, 3

node, 8, 14

packet data channel, 28

100

packet data protocol, 30
PAN, 24
parameter setting, 55
Partial sharing, 29
partitioning scheme, 28
PDC, 25
PDCH, 28
PDP, 30
performability analysis, 3
performance

analysis, 3
evaluation, 14
measures, 14

personal area network, 24
Petri net, 2, 11
Petri nets, 7
phase modulation, 31
physical channel, 26, 28
place, 11
PMF, 4
Poisson process, 8
population size, 9
PR, 9
PRD, 9
pre-processor, 67, 68
preemption, 9

PR, 9
PRD, 9
PRI, 9
PRS, 9

PRI, 9
priorities, 9
probability mass function, 4
processor sharing, 9, 39
product form, 14
PRS, 9
PS, 9, 39

QoS, 30
quality of service, 30
queue, 8
queueing discipline, 9
queueing network, 2, 8
queueing networks, 7, 10, 14

random variable, 3
reachability graph, 16

reduced, 16

reliability analysis, 3
reliability class, 30
remaining firing times, 17
RFT, 17
round robin, 9
RR, 9

sample space, 3
SCV, 64
SDMA, 25, 27
SDU, 30
semi-Markov process, 4
servers, 8
service data unit, 30
service precedence, 30
service process, 9
service rate, 10
service station, 8, 8, 14
service-in-random-order, 9
SIRO, 9
slave transition, 13
SMP, 4
space division multiple access, 25, 27
speed-up methods, 18
SPNP, 22, 38
spread spectrum, 33
state probabilities, 17
state probability vector, 16
state sojourn time, 2, 17
state space, 3
state space explosion, 2, 10
stochastic

matrix, 6
modelling, 2
process, 2, 3, 37

continuous-state, 4
discrete-state, 4

TBF, 30
TDD, 26
TDMA, 26
temporary block flow, 30
temporary flow identity, 30
TFI, 30
time division duplex, 26
time division multiple access, 26
time slot, 26
TimeNET, 22

101

token, 11
transition, 11
transition clock, 17
transition probability matrix, 5
transition rate matrix, 7, 16
transition rates, 6

UHF, 26
ultra high frequency, 26
UMTS, 32
Universal Mobile Telecommunications Sys-

tem, 32
UTRAN, 32

vanishing marking, 16

W-CDMA, 32
WAN, 24
wide area network, 24

102

